My WebLink
|
Help
|
About
|
Sign Out
Home
Browse
Search
ARCHIVED REPORTS XR0007595
EnvironmentalHealth
>
EHD Program Facility Records by Street Name
>
E
>
EL DORADO
>
308
>
3500 - Local Oversight Program
>
PR0544650
>
ARCHIVED REPORTS XR0007595
Metadata
Thumbnails
Annotations
Entry Properties
Last modified
7/11/2019 3:47:14 PM
Creation date
7/11/2019 1:10:34 PM
Metadata
Fields
Template:
EHD - Public
ProgramCode
3500 - Local Oversight Program
File Section
ARCHIVED REPORTS
FileName_PostFix
XR0007595
RECORD_ID
PR0544650
PE
3528
FACILITY_ID
FA0003520
FACILITY_NAME
DENS AUTO REPAIR INC
STREET_NUMBER
308
Direction
S
STREET_NAME
EL DORADO
STREET_TYPE
ST
City
STOCKTON
Zip
95203
APN
149063301
CURRENT_STATUS
02
SITE_LOCATION
308 S EL DORADO ST
P_LOCATION
01
P_DISTRICT
001
QC Status
Approved
Scanner
SJGOV\wng
Tags
EHD - Public
There are no annotations on this page.
Document management portal powered by Laserfiche WebLink 9 © 1998-2015
Laserfiche.
All rights reserved.
/
98
PDF
Print
Pages to print
Enter page numbers and/or page ranges separated by commas. For example, 1,3,5-12.
After downloading, print the document using a PDF reader (e.g. Adobe Reader).
View images
View plain text
r <br /> rGREGG IN SITU, INC. ADVANCED GEO <br /> December 5, 2002 Den's Auto Repair <br /> I01-169ma Stockton, Ca <br /> In situ groundwater samples were taken at three locations Groundwater samples were <br /> collected using a Hydropunch® type groundwater sampling system (figure 2) The <br /> groundwater sampler operates by pushing 1 75 inch diameter hollow rods with a <br /> retrievable tip A stainless steel filter screen is attached to the tip At the desired <br /> sampling depth, the rods are retracted exposing the filter screen and allowing for <br /> groundwater infiltration A small diameter bailer is then used to collect groundwater <br /> samples through the hollow rod <br /> Soil samples were taken using a piston type soil sampler (figure 3 The soil samples <br /> 9 ) p <br /> were collected in approximately 1 118 inch diameter stainless steel sample rings <br /> 3.0 CONE PENETRATION TEST DATA & INTERPRETATION <br /> The cone penetration test data is presented in graphical form Penetration depths are <br /> referenced to existing ground surface This data includes CPT logs of measured soil <br /> parameters and a computer tabulation of interpreted soil types along with additional <br /> Igeotechnical parameters and pore pressure dissipation data <br /> The stratigraphic interpretation is based on relationships between cone bearing (qc), <br /> sleeve friction (fs), and penetration pore pressure (U) The friction ratio (Rf), which is <br /> sleeve friction divided by cone bearing, is a calculated parameter which is Used to infer <br /> soil behavior type Generally, cohesive soils (clays) have high friction ratios, low cone <br /> bearing and generate large excess pore water pressures Cohesionless soils (sands) <br /> have lower friction ratios, high cone bearing and generate little in the way of excess <br /> pore water pressures <br /> Pore Pressure Dissipation Tests (PPDT's) were taken at various intervals in order to <br /> measure hydrostatic water pressures and approximate depth to groundwater table In <br /> addition, the PPDT data can be used to estimate the horizontal permeability (kh) of the <br /> soil The correlation to permeability is based on the time required for 50 percent of the <br /> measured dynamic pore pressure to dissipate (too) The PPDT correlation figure (figure <br /> 4) is provided in the Appendix <br /> The interpretation of soils encountered on this project was carried out using recent <br /> correlations developed by Robertson et al, 1990 It should be noted that it is not always <br /> possible to clearly identify a soil type based on qc, fs and U In these situations, <br /> experience and judgement and an assessment of the pore pressure dissipation data <br /> should be used to infer the soil behavior type The sal classification chart (figure 5) <br /> used to interpret soil types based on qc and Rf is provided in the Appendix <br />
The URL can be used to link to this page
Your browser does not support the video tag.