Laserfiche WebLink
Nitrate Mass Balance Calculation <br /> ai <br /> I <br /> Data Input: <br /> Effluent Quantity(Q): 428 gals/day Concentration Rain (Nb): 1.00 mg/L-N <br /> Effluent Stream(N,w): 60.00 mg/L-N Denitrification (d): 15.0% <br /> t Site Area (A): 2.08 Acres Deep Pere. of Rain (R): 11.69 in/yr <br /> �- Result: <br /> Mass Balance(N,): 10.6 mg1L-N <br /> MCL Drinking Water Nitrate as N: 10.0 mg/L-N Waste Loading (W): 2.77 in/yr <br /> Percent of MCL Nitrate as N 106% <br /> Equations: <br /> (W) in = (Q) gal x 1 ft3 x 365 day x 1 acre x 12 in x 1 Find <br /> yr day 7.48 gal 1 year 43,560 1 ft (A) acre <br /> 2.77 in/yr(site) =428 ga!/day x(1 cu-ft/7.48 gals)x(365 days/1 year)x(1 acre 143,560 sq-ft)x(12 in/1 ft)x(1 site/2.076 acres) <br /> Nr= WN 1-d +RN Hantzsche-Fennemore Equation(Nc) <br /> W+R <br /> 10.58 mg/L-N= ((2.77 in/yr x 60 mg/L-N x(1-0.15))+(11.69 in/yr x 1 mg/L-N))/(2.77 in/yr+11.69 in/yr) <br /> Variables: <br /> i <br /> Ne=Average nitrate-N concentration (mg/l) of combined effluent and rainfall percolate (10.58 mg/L-N). <br /> W=Uniform waste water loading for study area (inlyr) (2.77 inches/year). <br /> Nw=Total nitrate-N concentration of waste water percolate(60 mg/L-N). <br /> d=Fraction of nitrate-N loss due to denitrification in the soil (15%). <br /> R=Uniform deep percolation of rainfall (11.69 in/yr). <br /> Nb= Background nitrate-N concentration of rainfall(1 mg/L-N). <br /> I <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 60 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 15%. <br /> 3. Estimated deep percolation of rainfall is 11.69 in/yr, see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> R , <br /> I <br /> I <br /> NEIL 0. ANDERSON <br /> k AND ASS OCIATES <br /> { <br /> Plate 9 <br /> ' ! k <br />