Laserfiche WebLink
F1Nitrate Mass Balance Calculation <br /> { Data Input: <br /> Effluent Quantity(Q): 266 gals/day Concentration Rain(Nb): 1.00 mg/L-N <br /> Effluent Stream (NN,): 53.42 mg/L-N Denitrification(d): 35.0% <br /> Site Area(A): 8.31 Acres Deep Perc. of Rain (R): 4.00 in/yr <br /> l Waste Loading (W): 0.43 in/yr <br /> Result: <br /> Mass Balance(Nr): 4.3 mg/L-N <br /> MCL Drinking Water Nitrate as N: 10.0 mg/L-N <br /> Percent of MCL Nitrate as N 43% <br /> Equations., <br /> (W) in = (Q) gal x 1 ft3 x 365 da x 1 acre x 12 in x 1 Find <br /> M yr day 7.48 gal 1 year 43,560 ft2 1 ft (A)acre <br /> 0.43 in/yr(site) =266 gai/day x(1 cu-ft 17.48 gals)x(365 days/1 year)x(1 acre/43,560 sq-ft)x (12 in/1 ft)x(1 site/8.31 acres) <br /> 1 <br /> NC= WN,( )1-d +RNh Hantzsche-Fennemore Equation(lUc1 <br /> i <br /> ° — W+R <br /> ! 4.28 mg/L-N=((0.43 in/yr x 53.42 mg/L-N x(1-0.35))+(4 in/yr x 9mg/L-N))/(0.43 i�r+4 in/yr) = 2-433� <br /> F! <br /> Variables: <br /> ii Nc=Average nitrate-N concentration(mg/1)of combined effluent and rainfall percolate (4.28 mg/L-N). <br /> f W= Uniform waste water loading for study area (in/yr) (0.43 inches/year). <br /> + Nw=Total nitrate-N concentration of waste water percolate(53.42 mg/L-N). <br /> d=Fraction of nitrate-N loss due to denitrification in the soil (35%). <br /> R=Uniform deep percolation of rainfall(4 in/yr). <br /> h Nb= Background nitrate-N concentration of rainfall (1 mg/L-N). <br /> Assumptions: <br /> { 1. Total nitrogen concentration of waste stream based on estimate of 53.42 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 35%. <br /> 3. Estimated deep percolation of rainfall is 4 in/yr, see deep percolation of rain worksheet. <br /> r- 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> F�'I r <br /> I <br /> F <br /> - NEIL O. ANDERSON <br /> �j AN D ASSOCIATES <br /> Plate 2 <br /> R <br />