Laserfiche WebLink
Nitrate Mass Balance Calculation, 23.5 acres <br /> r <br /> Data Input: <br /> Effluent Quantity(Q): 678 gals/day Concentration Rain (No): 1.00 mg/L-N <br /> Effluent Stream (Nw): 51.60 mg/L-N Denitrification (d): 25.0% <br /> Site Area (A): 23.50 Acres Deep Perc. of Rain (R): 2.52 in/yr <br /> Waste Loading (W): 0.39 in/yr <br /> Result: <br /> Mass Balance(NJ: 6.0mg/L-N <br /> ` MCL Drinking Water Nitrate as N: 10.0 mg/L-N <br /> Percent of MCL Nitrate as N 60% <br /> r Equations: <br /> (W) in = (Q) g_al x 1 ft3 x 365 day x 1 acre x 12 in x 1 Find W <br /> yr day 7.48 gal 1 year 43,560 ft2 1 ft (A) acre <br /> 0.39 in/yr(site)=678 ga%day x(1 cu-lt/7.48 gals)x(365 days/1 year)x(1 acre/43,560 sq-tt)x(12 in/1 R)x(1 site/23.5 acres) <br /> ` N,= WN-0-d)+RN Hantzsche-Fennemore Equation(Nc) <br /> W+R <br /> 6.03 mg/L-N=((0.39 in/yr x 51.6 mg/L-N x(1-0.25))+(2.52 in/yr x Img/L-N))/(0.39 in/yr+2.52 in/yr) <br /> Variables: <br /> Nc= Average nitrate-N concentration(mg/1)of combined effluent and rainfall percolate (6.03 mg/L-N). <br /> W = Uniform waste water loading for study area (in/yr) (0.39 inches/year). <br /> Nw =Total nitrate-N concentration of waste water percolate(51.6 mg/L-N). <br /> d = Fraction of nitrate-N loss due to denitrification in the soil (25%). <br /> R= Uniform deep percolation of rainfall (2.52 in/yr). <br /> Nb = Background nitrate-N concentration of rainfall (1 mg/L-N). <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 51.6 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 25%. <br /> 3. Estimated deep percolation of rainfall is 2.52 in/yr, see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> NEIL O. ANDERSON <br /> AN D ASSOCIATES <br /> Plate 6 <br />