Laserfiche WebLink
Nitrate Mass Balance Calculation` ' <br /> Primary and Secondary Dwelling Units <br /> Data Input: <br /> Effluent Quantity(Q): 600 gals/day Concentration Rain (Nb): 1.00 mg/L-N <br /> Effluent Stream (NW): 40.00 mg/L-N Denitrification(d): 95.0% <br /> I� Site Area(A): 2.05 Acres Deep Perc.of Rain (R): 5.60 inlyj <br /> Result: <br /> Mass Balance(N j: 14.6 mg/L-N <br />'i MCL Drinking Water Nitrate as N: 10.0 mg/L-N Waste Loading (W}: 3.93 in/yr <br /> Percent of MCL Nitrate as N 146% <br /> Equations: <br /> (W) in = (Q) gal x 1 ft3 x 365 day x 1 acre x 12 in x 1 Find <br /> Y 9 Y <br /> yr <br /> da 7.48 a1 1 year 43,560 ftz 1 ft (A)acre <br /> 3.93 in/yr(site) =600 gai/day x(1 cu-ft/7.48 gals)x(365 days/1 year)x(9 acre 143,560 sq-ft)x (?2 in/? ft)x(1 site/2.05 acres) <br /> N,= WN 1-d)+RNb Hantzsche-Fennemore Equation(Nd <br /> W+R <br /> 14.62 mg/L-N=((3.93 in/yr x 40 mg/L-N x(9-0.95))+(5.6 intyr x 1mg/L.-N))/(3.93 in/yr+5.6 in/yr) <br /> Variables: <br /> Nc=Average nitrate-N concentration(mg/1)of combined effluent and rainfall percolate(14.62 mg/L-N). <br /> W= Uniform waste water loading for study area (in/yr) (3.93 inches/year). <br /> Nw=Total nitrate-N concentration of waste water percolate(40 mg/L-N). <br /> d= Fraction of nitrate-N loss due to denitrification in the soil (15%). <br /> R=Uniform deep percolation of rainfall (5.6 in/yr). <br /> Nb= Background nitrate-N concentration of rainfall (1 mg/L-N). <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 40 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 15%. <br /> 3. Estimated deep percolation of rainfall is 5.6 in/yr, see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> NEIL O. ANDERSON <br /> AN D ASSOCIATES <br /> i <br /> Nato 3 <br /> M <br />