Laserfiche WebLink
Nitrate Mass Balance Calculation (Nw = 45 mg/L-N) <br /> Data input: <br /> a - <br /> Effluent Quantity(Q): 780 gaWday Concentration Rain (Ne) 1.00 mg/L-N <br /> Effluent Stream (N,): 45.00 mg/L-N Denitrification (d): 15.0% <br /> Site Area(A): 7.55 Acres Deep Perc. of Rain (R): 6.84 in/yr <br /> t Waste Loading (W): 9.39 in/yr <br /> Result: <br /> Mass Balance(Nj: 7.3 mg1L-N <br /> MCL Drinking Water Nitrate as N: 10.0 mg/L-N <br /> Percent of MCL Nitrate as N 73% <br /> Equations: <br /> (W) in = (Q) gal x 1 W x .365 day x 1 acre x 12 in x .1 Find <br /> yr day 7.4$gal 1 year 43,560 ft2 1 ft (A)acre <br /> 1.39 in/yr(site) =780 ga!/day x(1 cu-ft/7.48 gals)x(365 days/1 year)x(1 acre 143,560 sq-ft)x(12 in/1 ft)x(1 site/7.55 acres) <br /> N,= WN-0-d1+RN,, Hantzsche-Fennemore Equation (Nc) <br /> W+R <br /> 7.29 mg/L-N=((9.39 in/yr x 45 mg/L-N x(1-0.15))+(6.84 in/yr x 1mg/L-N))/(1.39 in/yr+6.84 in/yr) <br /> Variables: <br /> Nc=Average nitrate-N concentration (mg/1)of combined effluent and rainfall percolate(7.29 mg/L-N). <br /> W= Uniform waste water loading for study area(in/yr) (1.39 inches/year). <br /> Nw=Total nitrate-N concentration of waste water percolate(45 mg/L-N). <br /> E d= Fraction of nitrate-N loss due to denitrification in the soil (15%). <br /> R= Uniform deep percolation of rainfall (6.84 in/yr). <br /> Nb= Background nitrate-N concentration of rainfall(1 mg/L-N). <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 45 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 15%. <br /> 3. Estimated deep percolation of rainfall is 6.84 in/yr, see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> I <br /> NEIL O. ANDERSON <br /> AND ASSOC I A T E S <br /> Flate 10 <br /> SII <br />