Laserfiche WebLink
Nitrate Mass Balance Calculation, 3 AC Parcel <br /> Data Input: <br /> Effluent Quantity(Q): 272 gals/day Concentration Rain (Nb): 1.00 mg/L-N <br /> Effluent Stream(N„,): 85.00 mg/L-N Denitrification(d): 20.0% <br /> Site Area (A): 22.27 Acres Deep Perc. of Rain (R): 3.30 in/yr <br /> Waste Loading(W): 0.16 in/yr <br /> Result: <br /> Mass Balance(Nj: 4.2 mg/L-N <br /> MCL Drinking Water Nitrate as N: 10.0 mg/L-N <br /> Percent of MCL Nitrate as N 42% <br /> Equations: <br /> (W) in = (Q) gal x 1 ft3 x 365 day x 1 acre x 12 in x 1 Find <br /> yr day 7.48 gal 1 year 43,560 ft2 1 ft (A) acre <br /> 0.16 in/yr(site) =272 gal/day x(1 cur-ft/7.48 gals)x(365 days/1 year)x(1 acre 143,560 sq-ft)x(12 in/1 ft)x(1 site 122.27 acres) <br /> .. <br /> N,= WN-(1-d)+RN„ Hantzsche-Fennemore Equation(Nc) <br /> W+R <br /> 4.18 mg/L-N=((0.16 inlyr x 85 mg/L-N x(1-0.2))+(3.3 in/yr x 1 mg/L-N))/(0.16 in/yr+3.3 in/yr) <br /> Variables: <br /> Nc=Average nitrate-N concentration (mg/I)of combined effluent and rainfall percolate(4.18 mg/L-N). <br /> W= Uniform waste water loading for study area(in/yr) (0.16 inches/year). <br /> Nw=Total nitrate-N concentration of waste water percolate (85 mg/L-N). <br /> d= Fraction of nitrate-N loss due to denitrification in the soil (20%). <br /> R= Uniform deep percolation of rainfall (3.3 in/yr). <br /> Nb=Background nitrate-N concentration of rainfall (1 mg/L-N). <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 85 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 20%. <br /> 3. Estimated deep percolation of rainfall is 3.3 in/yr, see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> "01,4NEIL O. ANDERSON <br /> A N D A S S O C I A T E S <br /> r <br /> Plate 10 <br />