Laserfiche WebLink
�. Nitrate Mass Balance Calculation, Parcel 1 <br /> Data Input: <br /> Effluent Quantity(Q): 350 gals/day Concentration Rain (Nb): 1.00 mg/L-N <br /> Effluent Stream (N,,): 45.00 mg/L-N Denitrification (d): 35.0% <br /> _ Site Area (A): 1.16 Acres Deep Perc. of Rain (R): 5.76 in/yr <br /> Waste Loading (W): 4.06 in/yr <br /> Result: <br /> Mass Balance(Nj: 12.7 mg/L-N <br /> MCL Drinking Water Nitrate as N: 10.0 mg/L-N <br /> Percent of MCL Nitrate as N 127% <br /> Equations: <br /> (W) in = (Q) gal x 1 ft3 x 365 day x 1 acre x 12 in x 1 Find <br /> yr day 7.48 gal 1 year 43,560 ftz 1 ft (A) acre <br /> 4.06 in/yr(site) =350 gal/day x(1 cu-ft/7.48 gals)x(365 days/1 year)x(1 acre 143,560 sq-R)x(12 in/1 R)x (1 site/1.16 acres) <br /> N,= WN-0-d)+RN„ Hantzsche-Fennemore Equation(Nc) <br /> ` W+R <br /> 12.67 mg/L-N=((4.06 in/yr x 45 mg/L-N x(1-0.35))+(5.76 in/yr x 1 mg/L-N))/(4.06 in/yr+5.76 in/yr) <br /> Variables: <br /> Nc=Average nitrate-N concentration (mg/1) of combined effluent and rainfall percolate(12.67 mg/L-N). <br /> W= Uniform waste water loading for study area(in/yr) (4.06 inches/year). <br /> Nw=Total nitrate-N concentration of waste water percolate(45 mg/L-N). <br /> d=Fraction of nitrate-N loss due to denitrification in the soil (35%). <br /> R=Uniform deep percolation of rainfall (5.76 in/yr). <br /> Nb= Background nitrate-N concentration of rainfall (1 mg/L-N). <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 45 mg/L-N. <br /> _ 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 35%. <br /> 3. Estimated deep percolation of rainfall is 5.76 in/yr, see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> NEIL O. ANDERSON <br /> AN D ASSOCIATES <br /> Plate 2 <br />