Laserfiche WebLink
` Nitrate Mass Balance Calculation <br /> Data Input: <br /> Effluent Quantity(Q): 560 gals/day Concentration Rain(Nb): 1.00 mg/L-N <br /> Effluent Stream(N„,): 45.00 mg/L-N Denitrification(d): 25.0% <br /> Site Area(A): 5.00 Acres Deep Perc. of Rain(R): 5.76 in/yr <br /> Waste Loading(W): 1.51 in/yr <br /> Result: <br /> Mass Balance(N j: 7.8 mg/L-N <br /> r MCL Drinking Water Nitrate as N: 10.0mg/L-N <br /> Percent of MCL Nitrate as N 78% <br /> Equations: <br /> (W) in = (Q) gal x 1 ft3 x 365 day x 1 acre x 12 in x 1 Find <br /> yr day 7.48 gal 1 year 43,560 ft 2 1 ft (A)acre <br /> 1.51 iniyr(site) =560 gal/day x(1 cu-ft/7.48 gals)x(365 days/1 year)x(f acre 143,560 sq-ft)x(12 in/1 ft)x(1 site 15 acres) <br /> N,= WN,,,(1-d)+RN„ Hantzsche-Fennemore Equation (Nc) <br /> W+R <br /> 779 mg4.-N=((1.51 in/yr x 45 mg1L-N x(1-0.25))+(5.76 inyr x 1mg/L-N))/(1.51 in/yr+5.76 in/yr) <br /> Variables: <br /> Nc=Average nitrate-N concentration(mg/1)of combined effluent and rainfall percolate(7.79 mg/L-N). <br /> W=Uniform waste water loading for study area(in/yr)(1.51 inches/year). <br /> r Nw=Total nitrate-N concentration of waste water percolate(45 mg/L-N). <br /> d =Fraction of nitrate-N loss due to denitrification in the soil (25%). <br /> R=Uniform deep percolation of rainfall (5.76 inlyr). <br /> Nb=Background nitrate-N concentration of rainfall (1 mg/L-N). <br /> r. <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 45 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 25%. <br /> 3. Estimated deep percolation of rainfall is 5.76 in/yr, see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> r <br /> V <br /> NEIL O. ANDERSON <br /> AN D ASSOCIATES <br /> Flate 10 <br /> r. <br />