Laserfiche WebLink
n <br /> Nitrate Mass Balance Calculation <br /> F <br /> �� Data Input: <br /> Effluent Quantity,(Q): 43.1 gals/da Concentration Rain (Nb): 1.00 mg1L-N <br /> Effluent Stream (Nb: l -N Denitrification (d): 25.0% <br /> Site Area ( 4. cres Deep Perc. of Rain (R):17.95 inlyr <br /> Result: <br /> Mass Balance(N�): 10.0 mg/L-N <br /> F MCL Drinking Water Nitrate as N: 10.0 mg/L-N Waste Loading(W): 1.44 intyr <br /> Percent of MCL Nitrate as N 100% <br /> 1 <br /> Equations: <br /> (W) in = (Q) gal x 1 ft3 x 365 day x 1 acre x 12 in x 1 Find <br /> Fiyr day 7.48 gal 1 year 43,560 ft2 1 ft (A)acre i <br /> 1.44 in/ r site =431 al/da x 1 cu-ft/7.48 gals x 365 da s/1 ear x 1 acre/43,560 sq-ft)x 12 in/1 ft x 1 site 14.03 acres) <br /> Y (site) g Y ( 9 ) ( Y year) ( Q ) ( ) <br /> Is N�= WNw{1-d)+RN„ Hantzsche-Fennemore Equation (Nd # <br /> `-' W+R <br /> �10.04mgN= (1.44 in/yr x 80 mg/L-N x(1-0.25))+(7.95 in/yr x 1mg/L-N))/(1.44 in/yr+7.95 in/yr) <br /> ! s , <br /> Variables: <br /> Nc=Average nitrate-N concentration (mgll)of combined effluent and rainfall percolate(10.04 mg/L-N). <br /> W= Uniform waste water loading for study area(in/yr)(1.44 inches/year). j <br /> Nw=Total nitrate-N concentration of waste water percolate (80 mg/L-N). ' <br /> d=Fraction of nitrate-N loss due to denitrification in the soil (25%). <br /> R= Uniform deep percolation of rainfall (7.95 in/yr). <br /> Nb= Background nitrate-N concentration of rainfall (1 mg/L-N). ; <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 80 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 25%. <br /> 3. Estimated deep percolation of rainfall is 7.95 in/yr, see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. , <br /> F <br /> Y-5 <br /> F <br /> I <br /> NEIL O. ANDERSON <br /> A N D A S S O C I A T E S <br /> F <br /> Plate 6 <br /> 1 <br /> l - <br />