Laserfiche WebLink
—Nitrate Mass Balance Calculation <br /> Data Input: <br /> Effluent Quantity(Q): 250 gals/day✓ Concentration Rain (Nb): 1.00 mg/L-N <br /> i <br /> Effluent Stream (NW): 85.00 mg/L-N✓ Denitrification (d): 35.0% <br /> Site Area (A): 79.00 Acres f Deep Perc. of Rain (R): 5.76 in/yr <br /> Result: <br /> Mass Balance(N j: 1.4 mg/L-N Waste Loading (W): 0.04 in/yr✓ <br /> MCL Drinking Water Nitrate as N: 10.0 mg/L-N <br /> Percent of MCL Nitrate as N 14% <br /> Equations: <br /> (W) in = (Q) gal x 1 ft3 x 365 day x 1 acre x 12 in x 1 Find W <br /> yr day 7.48 gal 1 year 43,560 ft2 1 ft (A) acre <br /> 0.04 in/yr(site) =250 gal/day x(1 cu-ft/7.48 gals)x (365 days/1 year)x (1 acre 143,560 sq-ft)x (12 in/1 ft)x (1 site/79 acres) <br /> N,= WNX-d)+RN,, Hantzsche-Fennemore Equation (Nc) <br /> W+R <br /> 1.4 mg/L-N=((0.04 in/yr x 85 mg/L-N x (1-0.35))+(5.76 in/yr x 1 mg/L-N))/(0.04 in/yr+5.76 in/yr) <br /> Variables: <br /> Nc=Average nitrate-N concentration (mg/1) of combined effluent and rainfall percolate (1.4 mg/L-N). <br /> W= Uniform waste water loading for study area (in/yr) (0.04 inches/year). <br /> Nw=Total nitrate-N concentration of waste water percolate (85 mg/L-N). <br /> d = Fraction of nitrate-N loss due to denitrification in the soil (35%). <br /> R = Uniform deep percolation of rainfall (5.76 in/yr). <br /> Nb= Background nitrate-N concentration of rainfall (1 mg/L-N). <br /> NG <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 85 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 35%. <br /> 3. Estimated deep percolation of rainfall is 5.76 in/yr, see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> NEIL O. ANDERSON <br /> A N D A S S O C I A T E S <br /> Plate 10 <br />