Laserfiche WebLink
Nitrate Mass Balance Calculation <br /> Data Input: <br /> Effluent Quantity(Q): 254.90 Concentration Rain(ND): 1.00 mg/L-N <br /> Effluent Stream(N.): 80.00 mg/L-N Denitrification(d): 25.0% <br /> Site Area(A): 1.50 Acres Deep Perc.of Rain(R): 14.06 in/r <br /> Result: <br /> Mass Balance(N j: 9.25 <br /> MCL Drinking Water Nitrate as N: 10.0 mg/L-N Waste Loading(W): 2.28 in/yr <br /> Percent of MCL Nitrate as N 92% <br /> Equations: <br /> (W) in = (Q) gal x 1 W x 365 day x 1 acre x 12 in x 1 Find W <br /> yr day 7.48 gal 1 year 43,560 ftz 1 It (A)acre <br /> 2.28 in/yr(site)=255 gal/day x(1 cu-ft/7.48 gals)x(365 days/1 year)x(1 acre/43,560 sq-ft)x(12 in/1 ft)x(1 site/1.5 acres) <br /> N�= W N 1-d +RN Hantzsche-Fennemore Equation(Nc) <br /> G9,2 ( x W��+��R Y,06. !L 3q <br /> 9.25 mg/L-N=((2.28 in/yr x 80 mg/L-N x(1-0.P5A14.06 in/yr x 1mg/L-N))/(2.28 irdyr+14.06 in/yr) <br /> Variables: /6O, e6 `G" W — g.Z3 <br /> Nc=Average nitrate-N concentration(mg/1)of combined effluent and rainfall percolate(9.25 mg/L-N). <br /> W=Uniform waste water loading for study area(in/yr)(2.28 inches/year). <br /> Nw=Total nitrate-N concentration of waste water percolate(80 mg/L-N). <br /> d=Fraction of nitrate-N loss due to denitrification in the soil(25%). <br /> R=Uniform deep percolation of rainfall(14.06 in/yr). <br /> Nb=Background nitrate-N concentration of rainfall(1 mg/L-N). <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 80 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 25%. <br /> 3. Estimated deep percolation of rainfall is 14.06 in/yr,see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> lrerracon <br />