Laserfiche WebLink
• <br /> Nitrate Mass Balance Calculation <br /> Data Input: <br /> Effluent Quantity(Q): 214 gals/day <br /> Effluent Stream(Nµ,): 85.00 mg/L-N <br /> Site Area(A): 3.59 Acres <br /> Concentration Rain(Ne): 1.00 mg/L-N <br /> Denitrification(d): 25.0% <br /> Deep Perc.of Rain(R): 5.76 inyr <br /> Result: <br /> Mass Balance(N j: 8.7 mg/L-N <br /> MCL Drinking Water Nitrate as N: 10.0 mg/L-N <br /> Percent of MCL Nitrate as N 870/6 <br /> • Waste Loading(W): 0.80 in/yr <br /> Equations: <br /> Find 00 <br /> (W) in = (Q) gal x 1 W x 365 day x 1 acre x 12 in x 1 <br /> yr day 7.48 gal 1 year 43,560 ft2 1 fl (A)acre <br /> 0.8 in/yr(site)=214 gaf/day x(1 cu-ft/7.48 gals)x(365 days/1 year)x(1 acre/43,560 sq-ft)x(12 in/1 ft)x(1 site 13.59 acres) <br /> N�= WNw 1-d +RN <br /> N1+R Hantzsche-Fennemore Equation(Nc) <br /> 8.68 mg/L-N=((0.8 intyr x 85 mgt-N x(1-0.25))+(5.76 in/yr x 1mg/L-N))/(0.8 inyr+5.76 inyr) <br /> Variables: <br /> Nc=Average nitrate-N concentration(mg/I)of combined effluent and rainfall percolate(8.68 mg/L-N). <br /> W=Uniform waste water loading for study area(intyr)(0.8 inches/year). <br /> Nw=Total nitrate-N concentration of waste water percolate(85 mg/L-N). <br /> d=Fraction of nitrate-N loss due to denitrification in the soil(25%). <br /> R=Uniform deep percolation of rainfall(5.76 intyr). <br /> Nb=Background nitrate-N concentration of rainfall(1 mg/L-N). <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 85 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 25%. <br /> 3. Estimated deep percolation of rainfall is 5.76 in/yr,see deep percolation of rain worksheet. <br />• 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br />• lrerracon <br />