Laserfiche WebLink
Nitrate Mass Balance Calculation <br /> Data Input: <br /> Effluent Quantity(Q): 1,069 gals/day Concentration Rain (Nb): 1.00 mg/L-N <br /> Effluent Stream (N,): 53.55 mg/L-N Denitrification (d): 10.0% <br /> Site Area (A): 22.70Acres Deep Perc. of Rain (R): 5.76 in/yr <br /> Waste Loading (W): 0.63in/yr <br /> Result: <br /> Mass Balance(N j: 5.7mg/L-N <br /> MCL Drinking Water Nitrate as N: 10.0mg/L-N <br /> Percent of MCL Nitrate as N 57% <br /> Equations: <br /> (W) in = (Q) gal x 1 ft3 x 365 day x 1 acre x 12 in x 1 Find W <br /> yr day 7.48 gal 1 year 43,560 ft' 1 ft (A) acre <br /> 0.63 in/yr(site)=1,069 ga%dayx(1 cu-tt/7.48 gals)x(365 days/1 year)x(1 acre/43,560 sq-fr)x(12 in/1 ft)x(1 site 122.7 acres) <br /> N,= WN-(1-d)+RN,, Hantzsche-Fennemore Equation(Nc1 <br /> W+R <br /> 5.67 mg/L-N=((0.63 in/yr x 53.55 mg/L-N x(1-a 1))+(5.76 in/yr x 1 mg/L-N))/(0.63 m/yr+5.76 in/yr) <br /> Variables: <br /> Nc = Average nitrate-N concentration (mg/I) of combined effluent and rainfall percolate(5.67 mg/L-N). <br /> W = Uniform waste water loading for study area (in/yr) (0.63 inches/year). <br /> Nw =Total nitrate-N concentration of waste water percolate(53.55 mg/L-N). <br /> d = Fraction of nitrate-N loss due to denitrification in the soil (10%). <br /> R= Uniform deep percolation of rainfall (5.76 in/yr). <br /> Nb = Background nitrate-N concentration of rainfall (1 mg/L-N). <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 53.55 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 10%. <br /> 3. Estimated deep percolation of rainfall is 5.76 in/yr, see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> NEIL O. ANDERSON <br /> A N D A S S O C I A T E S <br /> Plate 7 <br /> ,J <br />