Laserfiche WebLink
Nitrate Mass Balance Calculation <br /> Data Input: <br /> Effluent Quantity(Q): 574 gals/day Concentration Rain (Nb): 1.00 mg/L-N <br /> Effluent Stream (N,): 45.00 mg/L-N Denitrification (d): 10.0% <br /> Site Area(A): 81.85 Acres Deep Perc. of Rain (R): 6.84 in/yr <br /> Waste Loading (W): 0.09 in/yr <br /> Result: <br /> Mass Balance(N,): 1.5 mg/L-N <br /> MCL Drinking Water Nitrate as N: 10.0 mg/L-N <br /> Percent of MCL Nitrate as N 15% <br /> Equations: <br /> (W) in = (Q) gal x 1 ft3 x 365 day x 1 acre x 12 in x 1 Find <br /> yr day 7.48 gal 1 year 43,560 ftz 1 ft (A) acre <br /> 0.09 in/yr(site) =574 gal/day x (1 cu-ft/7.48 gals)x (365 days/1 year)x(1 acre 143,560 sq-ft)x(12 in/1 ft)x(1 site/81.85 acres) <br /> N,,= WN,,,(1-d)+RNh Hantzsche-Fennemore Equation (Nc) <br /> W+R <br /> 1.54 mg/L-N= ((0.09 in/yr x 45 mg/L-N x (1-0.1))+(6.84 in/yr x 1mg/L-N))/(0.09 in/yr+6.84 in/yr) <br /> Variables: <br /> Nc=Average nitrate-N concentration (mg/1) of combined effluent and rainfall percolate (1.54 mg/L-N). <br /> W= Uniform waste water loading for study area (in/yr) (0.09 inches/year). <br /> Nw=Total nitrate-N concentration of waste water percolate (45 mg/L-N). <br /> d= Fraction of nitrate-N loss due to denitrification in the soil (10%). <br /> R=Uniform deep percolation of rainfall (6.84 in/yr). <br /> Nb= Background nitrate-N concentration of rainfall (1 mg/L-N). <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 45 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 10%. <br /> 3. Estimated deep percolation of rainfall is 6.84 in/yr, see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> NEIL O. ANDERSON <br /> AN D ASSOCIATES <br /> Plate 11 <br />