My WebLink
|
Help
|
About
|
Sign Out
Home
Browse
Search
ARCHIVED REPORTS_2008_19
EnvironmentalHealth
>
EHD Program Facility Records by Street Name
>
A
>
AUSTIN
>
9999
>
4400 - Solid Waste Program
>
PR0440005
>
Archived Reports
>
ARCHIVED REPORTS_2008_19
Metadata
Thumbnails
Annotations
Entry Properties
Last modified
7/17/2020 3:53:28 PM
Creation date
7/3/2020 10:53:33 AM
Metadata
Fields
Template:
EHD - Public
ProgramCode
4400 - Solid Waste Program
File Section
ARCHIVED REPORTS
FileName_PostFix
2008_19
RECORD_ID
PR0440005
PE
4433
FACILITY_ID
FA0004516
FACILITY_NAME
FORWARD DISPOSAL SITE
STREET_NUMBER
9999
STREET_NAME
AUSTIN
STREET_TYPE
RD
City
MANTECA
Zip
95336
APN
20106001-3, 5
CURRENT_STATUS
01
SITE_LOCATION
9999 AUSTIN RD
P_LOCATION
99
P_DISTRICT
004
QC Status
Approved
Scanner
SJGOV\rtan
Supplemental fields
FilePath
\MIGRATIONS\SW\SW_4433_PR0440005_9999 AUSTIN_2008_19.tif
Tags
EHD - Public
Jump to thumbnail
< previous set
next set >
There are no annotations on this page.
Document management portal powered by Laserfiche WebLink 9 © 1998-2015
Laserfiche.
All rights reserved.
/
467
PDF
Print
Pages to print
Enter page numbers and/or page ranges separated by commas. For example, 1,3,5-12.
After downloading, print the document using a PDF reader (e.g. Adobe Reader).
View images
View plain text
and LCRS, leachate will pond on the liner, and the potential for infiltration of the leachate into the <br /> underlying waste will increase. <br /> Typical designs of interface lining systems incorporate measures to bridge over potential voids <br /> occurring near the underlying waste surface, which may result from the collapse of a large object, <br /> such as a refrigerator. This type of localized collapse is generally considered the worst possible <br /> occurrence and therefore is typically the basis for design(Jang,et al., 1993). <br /> The conservative "rusted refrigerator" design method was used to develop the requirements for the <br /> lining system subgrade. The "rusted refrigerator" design method assumes that a large object <br /> completely collapses, creating a void directly below the lining system. This collapse results in a local <br /> depression in the lining system. The magnitude of the depression is a function of the separation <br /> between the lining and the collapse and can be quantified using elastic solutions (Jang, et al., 1993). <br /> The separation/elastic solution methodology was used to assess the magnitude of separation required <br /> between the lining system and a potential void for the interface liner. <br /> The separation/elastic solution methodology was used to assess the magnitude of separation required <br /> between the lining system and a potential void for interface liners to be placed on slopes steeper than <br /> 6:1 (horizontal:vertical). For slopes flatter than 6:1, the magnitude of separation increases <br /> exponentially and it becomes cost prohibitive to place sufficient fill to maintain the required <br /> separation. <br /> For slopes flatter than 6:1, a design method based on soil arching and tension membrane theory was <br /> utilized (Sheriden, T.G.). The soil arching calculations allow the correlation of the shape of the soil <br /> arch to the strength of the soil. Once the shape and dimensions of the arch are known, the uniform <br /> ANIL normal pressure over the yielding area at the base of the liner system can be calculated. The tension <br /> membrane equation can then be used to calculate the required geogrid tension at the allowable strain <br /> limit. <br /> 2.3.2 Supported Lining Systems for Slopes Steeper than 6:1 <br /> According to calculations performed for this project (Appendix B), if a lining-to-collapse separation <br /> of approximately 6 feet is maintained, drainage grades upon the 5:1 (H:V) slope will be maintained <br /> and tensile strain in the lining system will be limited to less than 1 percent. Both the geomembrane <br /> and GCL components of the lining system have yield strains greater than 10 percent and are, <br /> therefore,flexible enough to withstand this conservatively calculated tensile strain. <br /> According to site operations personnel,) the former Austin Road Landfill waste slopes have an <br /> existing interim cover that is approximately 1-ft thick. In addition,it is unlikely that refuse that would <br /> create a large void(i.e.rusted refrigerator)would be placed within 1 to 2--ft of the former Austin Road <br /> Landfill final cover slopes. Therefore,to provide a lining-to-collapse separation of 6-ft and given that <br /> at least 2-ft of separation already exists to any potential void, approximately 4-ft of additional <br /> compacted fill material will be placed on the former Austin Road Landfill slopes. The WMU FU-08 <br /> grading plan (Appendix A) was developed to provide the necessary additional compacted subgrade <br /> fill. The combination of the interim cover already in place and the additional compacted subgrade fill <br /> will provide the required compacted fill material thickness below the WMU FU-08 interface lining <br /> system. <br /> Based on information provided by Butch Stefan,former Site Manager at the Forward,Inc.Landfill. <br /> WMU FU-08 2-3 <br />
The URL can be used to link to this page
Your browser does not support the video tag.