My WebLink
|
Help
|
About
|
Sign Out
Home
Browse
Search
ARCHIVED REPORTS_2013_8
EnvironmentalHealth
>
EHD Program Facility Records by Street Name
>
A
>
AUSTIN
>
9999
>
4400 - Solid Waste Program
>
PR0440005
>
Archived Reports
>
ARCHIVED REPORTS_2013_8
Metadata
Thumbnails
Annotations
Entry Properties
Last modified
7/17/2020 3:53:43 PM
Creation date
7/3/2020 10:57:25 AM
Metadata
Fields
Template:
EHD - Public
ProgramCode
4400 - Solid Waste Program
File Section
ARCHIVED REPORTS
FileName_PostFix
2013_8
RECORD_ID
PR0440005
PE
4433
FACILITY_ID
FA0004516
FACILITY_NAME
FORWARD DISPOSAL SITE
STREET_NUMBER
9999
STREET_NAME
AUSTIN
STREET_TYPE
RD
City
MANTECA
Zip
95336
APN
20106001-3, 5
CURRENT_STATUS
01
SITE_LOCATION
9999 AUSTIN RD
P_LOCATION
99
P_DISTRICT
004
QC Status
Approved
Scanner
SJGOV\rtan
Supplemental fields
FilePath
\MIGRATIONS\SW\SW_4433_PR0440005_9999 AUSTIN_2013_8.tif
Tags
EHD - Public
Jump to thumbnail
< previous set
next set >
There are no annotations on this page.
Document management portal powered by Laserfiche WebLink 9 © 1998-2015
Laserfiche.
All rights reserved.
/
358
PDF
Print
Pages to print
Enter page numbers and/or page ranges separated by commas. For example, 1,3,5-12.
After downloading, print the document using a PDF reader (e.g. Adobe Reader).
View images
View plain text
For slopes flatter than 6:1, a design method based on soil arching and tension membrane theory was <br /> utilized (Sheriden, T.G.). The soil arching calculations allow the correlation of the shape of the soil <br /> arch to the strength of the soil. Once the shape and dimensions of the arch are known, the uniform <br /> normal pressure over the yielding area at the base of the liner system can be calculated. The tension <br /> membrane equation can then be used to calculate the required geogrid tension at the allowable strain <br /> limit. <br /> 2.3.2 Supported Lining Systems for Slopes Steeper than 6:1 <br /> According to calculations performed for this project (Appendix B), if a lining-to-collapse separation <br /> of approximately 5.5 feet is maintained, drainage grades upon the 4.5:1 (H:V) slope will be <br /> maintained and tensile strain in the lining system will be limited to less than 1 percent. Both the <br /> geomembrane and GCL components of the lining system have yield strains greater than 10 percent <br /> and are,therefore,flexible enough to withstand this conservatively calculated tensile strain. <br /> According to site operations personnel,) the former Austin Road Landfill waste slopes have an <br /> existing interim cover that is approximately 1-ft thick.In addition, it is unlikely that refuse that would <br /> create a large void (i.e. rusted refrigerator) would be placed within 2-ft of the former Austin Road <br /> Landfill final cover slopes. Therefore, to provide a lining-to-collapse separation of 5.5-ft and given <br /> that at least 2-ft of separation already exists to any potential void and there is an approximate 1-ft <br /> thickness of existing soil cover, approximately 3-ft of additional compacted fill material will be <br /> placed on the former Austin Road Landfill slopes. The WMU FU-13 grading plan (Appendix A) <br /> was developed to provide the necessary additional compacted subgrade fill. The combination of the <br /> interim cover already in place and the additional compacted subgrade fill will provide the required <br /> compacted fill material thickness below the WMU FU-13 interface lining system. <br /> 2.3.3 Supported Lining Systems for Slopes Flatter than 6:1 <br /> The grade in the portion of the landfill that connects WMU FU-08 North and WMU FU-13 is <br /> approximately ten percent or less. Because this region overlies the former Austin Road Landfill and <br /> is relatively flat, a geogrid will be placed to support the overlying liners and LCRS. <br /> The geogrid calculations are based on both the short-term tensile strength of the geogrid and the long <br /> term allowable tensile strength. Because the multiaxial yield strength of geomembranes is about 7 to <br /> 10 percent, the specified short term tensile strength of the geogrid is measured at five percent rather <br /> than using the ultimate geogrid tensile strength. This requirement maintains strain compatibility by <br /> allowing the geogrid to achieve the required tensile strength before the overlying geomembrane <br /> deforms beyond its yield strength. <br /> Because the tensile strength of geogrids can degrade over time due to factors such as creep <br /> installation damage, and other environmental factors, the short-term tensile strength of the geogrid is <br /> reduced to calculate a suitable long-term allowable load. The long-term allowable load is compared <br /> to the required tensile load in specifying the geogrid properties. <br /> The final lifts of refuse on the top deck of the former Austin Road Landfill were placed in 2002. <br /> According to site operations personnel, no large metal objects such as refrigerators were placed in the <br /> final refuse lifts. The type of refuse placed was municipal solid waste and some construction and <br /> demolition debris. It was estimated that the largest void that may collapse in this type of waste has a <br /> ® 1 Based on information provided by Butch Stefani,former Site Manager at the Forward,Inc.Landfill. <br /> WMU FU-13 REPORT.DOC 2-3 <br />
The URL can be used to link to this page
Your browser does not support the video tag.