My WebLink
|
Help
|
About
|
Sign Out
Home
Browse
Search
BOOK 107
PublicWorks
>
VAULT MAPS
>
Field Books
>
BOOK 107
Metadata
Thumbnails
Annotations
Entry Properties
Last modified
1/26/2016 5:47:20 PM
Creation date
1/23/2016 7:06:11 PM
Metadata
Fields
Template:
Field Books
Supplemental fields
DocCategory
Field Books
There are no annotations on this page.
Document management portal powered by Laserfiche WebLink 9 © 1998-2015
Laserfiche.
All rights reserved.
/
83
PDF
Print
Pages to print
Enter page numbers and/or page ranges separated by commas. For example, 1,3,5-12.
After downloading, print the document using a PDF reader (e.g. Adobe Reader).
Show annotations
View images
View plain text
r = 7 DIETZGEN'S RAILROAD CURVE <br /> 1 AND <br /> REDUCTION TABLES <br /> / (;W4tht,1914,by Eugene Dietsgen Co.,Now York City <br /> Za? PCIlk <br /> T P <br /> C <br /> S <br /> C' 4 <br /> CURVE FORMULAS <br /> Radius=R= Lm <br /> �(1) Degree of Curve=D and sin.D=s (� <br /> Tangent=T=RtanA (3)Length of Curve=L=100 (4) <br /> Middle ordinate=M=R(1—cos. (5) =Rvers (6) <br /> External=E=TtanA-(7)=R+cos.Q R(8)=Rexsee#(9) <br /> Long Chord=C=2 R sin.y(10)A=Central Angle <br /> EXPLANATION AND USE OF TABLES <br /> Stations.—Given P. I.=Sta. 161+60.35 to find Sta. of P. C. <br /> and P. T. p==620 10' D-8e 20'. From Table IV for 1° curve T= <br /> 3454.1 and+SA-414.49 ft. From Table V correction—,36 or T= <br /> 414.85 ft. P. C.=Sts. P.L—T-157+45.50. Also from (4) L= <br /> 746.00 and P.T.—Sta.P.C.+Lm164+91.50. <br /> Offsets.—Tangent offsets vary (a roximately) directly with <br /> D and with square of the distance. Thus tangent offset for Sta. <br /> 158 on above curve i92.16 ft.found as follows. From Table III tangent <br /> offset for 100 ft.7.27 ft. Distance-158-Sta.P. C.-54.50,hence <br /> offset---7.27 (54.50+100)2==2.16 ft. Also square of any distance <br /> divided by twice the radius equals(approximately)the distance from <br /> tangent to curve. Thus (54.50)2+(2 x 688.26)=2.16 ft. <br /> Deflections.—Deflection angle-34 D for 100 ft., 34 D for 50 ft., <br /> etc. For c ft:(in minutes).3 x C x D°or=-deft.for 1 ft.from Table <br /> III x C. For Sta. 158 of above curve.3 x 54.5 x 8X=136.2' or <br /> 2° 16.2', or-2.50 x 54.5=136.2'from Table III. For Sts. 159 deflec- <br /> tion angle=2°16.2'+8*20'+2-6e 26.2',etc. <br /> Externals.—May be found in similar manner to tangents. Thus <br /> ` E for curve above is 91.37. For from Table IV for 1e curve E=960.6 <br /> j for 8° 20'=980.6+83s==91.27 and from Table V correction=.10 or <br /> E---91.37 ft. Or suppose p==32°and E is measured and found to be <br /> 42 ft. What is D7 From Table IV E=230.9 and+4q--5.5 or D_- <br /> =5°3050301. <br /> '. <br />
The URL can be used to link to this page
Your browser does not support the video tag.