Laserfiche WebLink
I i 6ELDBOOK 3 DIETZGEN'S RAILROAD CURVE <br /> 1 <br /> _ AND <br /> REDUCTION TABLES <br /> Cbyp tight,1914,by Eugene Dietftm Co.,New York CIO <br /> TT PacA <br /> �w 41 <br /> CURVE FORMULAS <br /> Radius=R=e-�(1)Degree of Curve=D and sin.D=x(2) <br /> Tangent=T=Rtan"" (3)Length of Curve=L=100 4 <br /> Middle ordinate=M=R(1—cos. (5) =Rvere 3(6) <br /> External=E=Ttanr(7)=R=cos. -R(8)=Rexsec4(9) <br /> Long Chord=C=2 R sin.q(10),&=Central Angie <br /> EXPLANATION AND USE OF TABLES <br /> Stations.—Given P. I.==Sta. 161+60.35 to find Sta. of p. C. <br /> and P.T. 0 62° 10' D-80 20'. From Table IV for P curve T- <br /> 3454.1 and+8�J=2 49 ft. From Table V oorra tion�,36 or T <br /> ! 414.85 ft. P. CSt 6 P.I.—'D=157+45.50. Also from (4) 1. <br /> i 746.00 and P.T.oBta.P.C.+1,--164+91.50. <br /> d 4 <br /> Oflseter—Tangent offsets vary (appppro�rimately) directly with <br /> D and with square of the distance. Rus tangent offset for 8ta. <br /> 158 <br /> 55 ofour,100 ft curve7�7 6gtft.found follows. From Table III tangent <br /> offset ce=1 <br /> b8—Stn.P. C.=54.50,hence <br /> offset-7.27 (54.50+100?--2.16 ft. Also are of any <br /> divided by twice the radius equals(I proximately).the disttancef distance <br /> tangent to curve. Thus (54.50)'+(2 x 688.26}=2.16 ft. <br /> C Deflections.--Deflection angbe= D for 100 ft., 7,�D for 50 ft., <br /> etc. For c.ft.=(in minutes) 3 xC X. <br /> etc. or=-lefl.for 1-tt.from Table <br /> ! III x C. For Sta. 158 of above curve—.3 x 54.5 x 83J-136.2' for <br /> 20 16.2,or-2.50 x 54.5=136.2'from Table III. For Sta. 159 deflec- <br /> tion angle"16.2'+W 20'+2==("26,2',etc. <br /> ( Externllpj--May bund in similar manner to tangents. Thus <br /> E for curve above is 912For from Table IV for r curve E==960.6 <br /> for 8° 2 —4W.6+8H=-91.27 and from Table V correction=.10 or <br /> I E=91.87 ft. Or suppose o-32°and E is measured and found to be <br /> 42 ft. What is DY From Table IV E—L30.9 and+42,5,5 or D-- <br /> 50301. <br />