TRIGONOMETRIC FORMULAE
<br /> --- B B B
<br /> e q a
<br /> 09 a a a
<br /> A
<br /> b C t___—b C —� C
<br /> Righk Triasgle Oblique Triangles
<br /> Solution of Right Triangles
<br /> -- For Angle A. sin =a,cos= h .= a b 'a> e
<br /> _1 �� T,cot=a,see=b, cosec
<br /> Z Given Repaired a
<br /> a, b A, B,c tan A=b= cot B,c= a s=a .1+_
<br /> Ir - N � 3 . S a a
<br /> q v" v 3 g a, ° A,B, b sin A=a =cos B b1-a
<br /> a
<br /> 3 S A,a, B, b, a B=90°—A,b=a cotA,a= a
<br /> y- v
<br /> v 7" sin d,
<br /> A,b B,a, e B=90°A,a =b tail A,e=
<br /> cos A.
<br /> ' A e B,a, b 4 B=900—A,a=°sin A,b—o cea A,
<br /> RETURN TO Solution of Obliquis Triangles
<br /> A.
<br /> B, bo,
<br /> a. b, a,
<br /> COUNTY SURVEYOR'$ OFFICE B , ed __ aeig,B
<br /> d, , Com:! .bcin � ' C.="iI:80°—(A�-B),s a sin O
<br /> =
<br /> sin A _
<br /> n�
<br /> jc STOC : ON CALIFORNIAi f i d. a, b B,c, C sin B= ,O= 180°—(d+B),
<br /> 1-17 ". a. sin A
<br /> 9 a, b, C A, B,a A+B=180°—C,tsa i(A—Br(a—b)tan i(A+B)
<br /> " - 3f• b
<br /> -1 _a sin C.
<br /> a, b, a A, B, C a=a+2+°
<br /> —
<br /> be
<br /> sin#B=�a—aXs--c C_180°—(A+B)
<br /> as '
<br /> as, b, o Area 8=a+2+6, area
<br /> A, b, a Areab a sin A
<br /> area = 2
<br /> A,B,C,a Area area =aE sin B sin C
<br /> 2 sin A
<br /> REDUCTION TO HORIZONTAL
<br /> Horizonbd dii���� 31o=e distance asaltt=]ied by the
<br /> cosine of the vertical ankle.Thu&sloped _319.4tt.
<br /> go0e�gtsa
<br /> Vert ¢ale=f°1U�. From Tdb1e,Page I7C boa b°1!Y=
<br /> rizonhl distance=818 4X.9D6Y�lls py 1f,
<br /> bpQ p ntat df�ance also—Slope distance mines slope
<br /> e V distanoe timer 0--cosine of veWaa!ankle). With the
<br /> same tis as the=recediar example,the tollow.
<br /> Horizontal distance ink resaH is'el Cosine 6"°19�=.9B6 I ws__ ptl.
<br /> Whsa the rise is known,th 9AXAG4�1=Ls s�4-1.SI 'IL
<br /> I—the spnare of the rise di�oided by t tal is a e�y:—the ase=e 41L.
<br /> � � X 1dt._Thos.rise=l4tt.. V.
<br /> M!AL
<br /> aeon is U.a A.
<br /> w,
<br />
|