J f Z3 {
<br /> TRIGONOMETRIC FORMULAE
<br /> B B B
<br /> i -
<br /> _ s
<br /> a a a a
<br /> A a
<br /> b a �.--b a c
<br /> Right Tri
<br /> l
<br /> 6 �e Oblique Triangles
<br /> Solution of Right Triangles
<br /> /L 7 For Angle A. sin =a b a b`
<br /> a ,cos= o .tan= b ,cot = a,sec ec
<br /> a . cosa
<br /> (liven Required a b a
<br /> ja, b A,B,o tan d—a= cot B,o = a -{- :�,a
<br /> b IT
<br /> s!
<br /> a, c A, B, b sin A a a =cos B,b=%/
<br /> -7 a a a—a =0 1
<br /> o
<br /> a B, b, o
<br /> sin A.
<br /> b B,a, a B=W—A,a — b tan o— b ►
<br /> ' cos A.
<br /> 46 B,a, b B=90°—A,a=a sin A,b=a cos A,
<br /> 8irea Requited -
<br /> Solution of Oblique Triangles
<br /> B,a b, a, C b= s
<br /> in ' C= 180°—(A+B),a a asin a t .
<br /> sin d
<br /> A, a, b B,a, C sinB= bsaA,a= 180°—(A+B),o= asina
<br /> sin A
<br /> RETURN .�0 !_q b. �,B,�' +BF'fiO U,Un j(A—B)— ,
<br /> COUNtY SURVEYOR'S MICE _(a—b)tan�rA+B)
<br /> ..asin C.. a+ b
<br /> _./ cin.&
<br /> SSCCK?OTI CpLrtl� '�`b e
<br /> q b, a d,B, C ,sin]dk-
<br /> 2
<br /> „a z: sinB='l s—a 8--a
<br /> r, b a±b+ V a e �C=180'—(d+�
<br /> Area e= 2- , area = a a—a a
<br /> a—c
<br /> A, b, a Area area = b a sin A
<br /> 2
<br /> a2 sin B sin C
<br /> A,B,L:a Area area = si
<br /> / 2 sin d g
<br /> REDUCTION TO HORIZONTAL -
<br /> y Horizontal distanes—No"distance muldplie/ the
<br /> cosine of theveltcalangle Thus Ott.
<br /> a�yts9cg Vert angle=so m From Table, I1 igra
<br /> VVie 1e 9866. Horizontal distance—M4X
<br /> l' distance times distance
<br /> 2 i a of e�pye
<br /> same l5gnres ss in the pi7eei{ the
<br /> i Horizontal distance 81X�a ebow
<br /> y g j j�ei�
<br /> When the rise is is
<br /> less the square of therimQd bFar.hnso rlm--e14it.
<br /> iM a tt
<br /> IL
<br /> MAK u u.s.e.
<br />
|