t
<br /> j'a vs r TRIGONOMETRIC FORMOL& i
<br /> B
<br /> 0 3 -�' .7 �! ;�� B
<br /> a a c
<br /> 3 7
<br /> p+ /L 7 7f 'y• i •i _ _ � �/e. � � b CA�p
<br /> Aigbt Triangle Oblique Triangles
<br /> 7 Solution of Right Triangles
<br /> • S -7 . 2� For Angle.A. din =a = b tan= a b
<br /> � o 0
<br /> j y[ a • c , To cots
<br /> = a, ec m b, cosec a {
<br /> ,t �� j j/�,/ k, i b olives Required a a
<br /> 09/�� ¢ �J a,p A, B,a tanA=b= cotB c =1/a =a 1 F
<br /> 4_1 9.6 y 3 E 9 7 IVa, c .A, B, b sin A=a a cos B,b=-,/ o a c--a =c 1 i_W
<br /> a Y
<br /> ---77
<br /> ; f A,a B, b, c B=90°—A,b =acotA,a—
<br /> sin
<br /> _ sia A.
<br /> i `•,1'd A, b B,a, e B s 90°—A,a = b tan A,c= b �. r
<br /> cos A.
<br /> `J A,c B, a, b I B=90°—A,a=c sin A,b=c cos A, s z.
<br /> 3
<br /> (liven" Required Solution of Oblique Triangles
<br /> __
<br /> A, B, a b, c, C b a sin B
<br /> sin A ' C= 180°—(A-1-B), c m asin C
<br /> sin A
<br /> Gyp y ./ 6J bf 6 o, Y.� - A, a, b B, c, C sin B= a p sin A,C= 180*—(A+B),o.
<br /> ,C= 180o—(A-(-B),a= a sin a
<br /> sin
<br /> 7 t a, b, C A, B, a A+B=180°—C,tan Lfv i}(A—B)—(a—b)tan 1(A ♦B)
<br /> -- —
<br /> 7 .`, oa+ b
<br /> a sin C
<br /> c sin A
<br /> 1 �- b
<br /> a, , a . A, B, C a=a±b+
<br /> •y 2 ,siaA=Y b
<br /> / 3 3 t dr 71. P L (2,3 y yltr-3&a sin�B=�� ,C=1800—(A+B)
<br /> �f✓3y
<br /> 3 OL f! 3,r a, b> c Area a=a+2 a area
<br /> dbcsin A
<br /> 0 d. T L A, b, c Area area =
<br /> 2
<br /> 1'' as sin B ein C
<br /> A,B,C,a Area area = 2 sin A
<br /> REDUCTION TO HORIZONTAL
<br /> s
<br /> 3 L , Horizontal distance—Slopes distance multiolled by the
<br /> y I a v 4 �` �Mp Vero a oangk Q'aid r.
<br /> From Tab p�baae��e Ideis Lacecos 50'
<br /> 9M Horizatai diatanosa91a4X.99E6�81809 ftHorizo iatsnce istltaee mien dopedistance times (1-•�o'eme of verde! W th the
<br /> U
<br /> $ame figures tis in the preceding esarguZ follow.
<br /> distance ing result is obtained.Cosine b°IW—.995L1—im-Am.
<br /> •. Wben 919c4xM41=1.31.W.4 1.91=31809&
<br /> t1se L known,the onto distanes is app el .-4he slops dist
<br /> ""Sass the aMft of;he rise di ded
<br /> s 8ft slope
<br /> <no. w z .t;`' a Horizontal disfaaoe=9113 6—t3 liL�-4m �
<br /> by twice tb d
<br /> Plo
<br /> z
<br /> LADE IT.s.a.
<br /> So
<br /> r
<br /> dp
<br /> V ,
<br /> to
<br />
|