|
3 I,72..G3 " /o /� TRIG.OM ET-RIC FORMULA
<br /> _ _.
<br /> B B9 B
<br /> /.
<br /> Loa 7< P 7/ • . .
<br /> 7 -2 2 3aP
<br /> .
<br /> -3 . G
<br /> U e ✓• "4 a b ASt
<br /> Oblique Triangles
<br /> Soluti0m of Might Trian;las
<br /> V 17 Z ,' For Angle A. gill=e ,cos s o ,tam b ,cot b,see=b, cosec
<br /> ` GivenRequired � a
<br /> a, b A,j9,6 tan A= a COt B,0 = 9 =
<br /> vdr+3- a 1 --
<br /> • 9
<br /> B, b sin A—a —cosB,b=V o+a 6—e =6 1 a
<br /> A,a B, b, 6 B=90°—A,b=acotA,o= s�a
<br /> 3 v �! `_ 'n A.
<br /> P y •> J—
<br /> A, b B,a, e B=909—A,a = b tab A,a'= b " f.
<br /> v �.
<br /> / •� d,o B,a, b B=90°—A,a='a in A,b=o cos A,
<br /> -. Solution of Obliquo Triangles
<br /> (liven Required __a sin B sib C
<br /> '� c d, B,a b, e, C b sin A ' C= 1806—(A+B),e'er a
<br /> / � b sin.A
<br /> A, a, b B, o, C sing= , a , sin A
<br /> G'= 180°—(A-hB).6� ainC
<br /> / 3 7 7 sin A
<br /> V ` p
<br /> o.74 ° o, b, C A,B,o A+B=180°—O,tan (A—B)= b tan (d+B1
<br /> �y C ,
<br /> LiCJ , ✓ .(�� a _ aeinC a+ b
<br /> 7 sin A
<br /> _ C e=a+2+o,.in jA= is—e-0
<br /> y S f 8<S S� a.7/O,r/t/� Z •� �fLl J� be
<br /> 6
<br /> sia)B=
<br /> `J ,C=180°—(A+B)
<br /> r„ a+b+o y
<br /> .z o, b, o Area e_ 2 ,area
<br /> J"i=2 � G �
<br /> r , 6
<br /> b rea_
<br /> A b 6 sin A
<br /> arca — 2
<br /> d,B,C,a Area area as sin B sin C /u
<br /> • ' �� � <r ' � .
<br /> G .) 2 sin d
<br /> t !I '; -, (� '• REDUCTION TO HORIZONTALHorizonba (` e
<br /> Ver tda-150 Woal =g 41t r; r
<br /> Vett.•aaaie=bo t 'Fro'nt 6°
<br /> Horissn A s•,p>t - a0 feL
<br /> v" 9° r stow tat d +bio +flthsnab tninns slo
<br /> I✓
<br /> c dlstanae —eoalatr ad
<br /> �. i ✓ v rsnss as a.t5e as?._=With
<br /> / rL'y { xotisontai dist+taos > m a% —t ar sir 3—.a .00u.
<br /> Jamcm
<br /> us/ ' �° ossa tiuteste ziiiNtl'�yifs&a
<br /> 14 ft,
<br /> tbe
<br /> \ \ \ \ (lt Looe dis•�et a ft xarlaosal
<br /> z—X3-02.6—aQM 32=90L28 ft.
<br /> •
<br /> OP
<br />
|