Laserfiche WebLink
TRIGONOMETRIC FORMULAE <br /> _ B B B <br /> ,o c <br /> 3ik-r g 1 a c a ° a <br /> qx� � <br /> b o A b C <br /> R A b C <br /> ight Triangle �--Oblique Triangles- <br /> Solution of Right Triangles <br /> For Angle A. sin = a ,cos= b,tan= a ,cot = b ,sec=�, cosec= a <br /> i Given Required I C c b a b �y <br /> A, B,c tan A=a= cot c =B, a z = <br /> b 2+ a I T a <br /> a <br /> A,B, b <br /> A,a B, b,'c B=90°—A, b =acotA,c= a <br /> sin A. <br /> A, b B, a, c B=90'—A,a = b tan A,c= b <br /> cos A. <br /> f A,c B, a, b I B=90°—A,a =cSin A,b= ecos A, <br /> Solution of Oblique Triangles <br /> <- f Given Required a sin B <br /> ' A' B,a b' e, C b = sin A ' C= 180`—(A+B), c — a,in C <br /> sin A <br /> b sin A <br /> a, b B,c, C sin B= ,C= 180°—(A-t-B),c = a sinC <br /> a sin A <br /> C A, B,c A+B=180°—C,tan (A—B)— a—b)tan- (A+B) <br /> 7j 7b` D S c = inC a+ b <br /> as <br /> q i J sin A <br /> ay b, c A, B, C s=a+b+c ��"�) <br /> 2 ,six aA= <br /> sinlB=�(y ac ,C=180--(A+B) <br /> 9 a+b+c <br /> t7 b, c Area 8= 2 , area =V/a(s—a s— (s—o <br /> a Areab e sin A <br /> area = <br /> 2 <br /> A,B,C,a Area area =az sin B sin C 2 sin A <br /> \ REDUCTION TO HORIZONTAL <br /> Horizontal distance—Slope distance multiplied by the <br /> cosine of the vertical angle.Thus:slope distance=s19.4 rL <br /> pee Vert. angle=60 1W. From Table,Page IX.cos 6o 1W= <br /> a, 996& Horizontal distahce=519.4X.9M=sl&09 r1. <br /> 6�uoe brgle ex Horizontal distance also=Slope distance minus alo <br /> Qe distance times (1—cosine of vertical angle). With the <br /> same figures as in the preceding example,.the follow- <br /> Horizontal distance ing result is obtained.Cosine 501N=.9968,i—AW=.0041. <br /> 319.4X.0041=1.31.919.4-1.31=31&O9 ft. <br /> dist- <br /> ance <br /> When <br /> squarrise e known, <br /> f a rise divided by twiceal the slop approximately:—the <br /> Th neislope <br /> oe 14 ft, <br /> slope distance--=@ f1. Ei4ritontal distar�pa=bps s-lf.2s.l�.�pyg_0 3��48� <br /> _ 2 X SMS <br /> MADS M U.s,A. <br /> 01 <br /> - - <br /> l .. <br /> i <br />