TRIGONOMETRIC FORMOL&
<br /> B
<br /> a.-� c - �
<br /> a e
<br /> a
<br /> r. 0 d b P
<br /> ' R�gltt Trinite _ b }
<br /> Obligee Triangles .
<br /> Solhstidh Of Ititht Trian lee
<br /> Per Angle A. sin'=a,cos— b,tan— a c gb == o
<br /> c o of a,sec ."In M.o
<br /> (liven Required 1 , i a
<br /> a, b A,B,o tall di cot.8a := a i
<br /> +a�
<br /> a, o A,B,b sin A—a=cos B b=%/ Fa o—a�=c 1a
<br /> o —as
<br /> A,a► B, b, o B=90°—A,b—a cotA o= a
<br /> '
<br /> sin A.
<br /> 3
<br /> d, b B,a, o jBa!gW—A,a— b tan A,o= b
<br /> cos A. f'
<br /> A, a B, a, b B=900—A,a= o sin A,b=e cos d, v
<br /> divan R��Solution Af Oblique Triangles
<br /> 'b, g --- B
<br /> C . 6= 180 —A
<br /> am d ' ° ( ,'�"B),o= asin C
<br /> A, a,•b B, e, C sinB— brinA , sinA
<br /> J a ,6'= 180°—(A•t.B),o a sid C
<br /> a sin A
<br /> a, b,.C A, B,e A+B=180°—C,tan jS(A—B)=(a—b)tea }(A}B)
<br /> asin C a+ b
<br /> sin A
<br /> A, B, Cs=a+2+c'4,'A= ja-
<br /> be
<br /> �. sin}B=�(s a o ,C=180°--(A+B)
<br /> alb=� c.
<br /> b, c Area 8= 2 ,area
<br /> A, 1i, o Areab o ein A'
<br /> area = 2
<br /> a2 Bin B,
<br /> sin
<br /> A.B,,9,a Area area =
<br /> 2---
<br /> .�. _ sia A
<br /> REDUCTION TO HORIZONTAL
<br /> Horizontal diatan Stldpe distance,.,®r., o
<br /> cosiaeoltheve c +nale 76us:slo 910y4h
<br /> 1 �otfe ayyt�,6 ar Pert angle=b 1 Fro w IX jos b isa
<br /> 9960 Horizontal Op
<br /> ft.
<br /> A HorizOAW distanm also=$Me dielsnee
<br /> Q distance times U—aosine of v °mus
<br /> same lirutMa as
<br /> Sim the arae ezaru a ith, �s
<br /> Hslizoslal diatapee ina reaait is.ogjaed.Cosige b° =.99�1e—, =.6041.
<br /> Wheel theFiae is kww=h,theahaoX��a�yltal�1atsxei is ietu ami i
<br /> s ye8 tbe.iltinare e!jhe rise diw'dsd tb slope dist-
<br /> ODe distance=9016 ft. Horizontal o�the slope distsaa0. Thos:sfse=14}L,
<br /> dicta tos6ag6—14= -ORO-.a,=.m xjL
<br /> i
<br /> 10
<br /> s
<br /> r
<br /> _.
<br /> 01 j j
<br />
|