Laserfiche WebLink
� P9 zz <br /> TRIGONOMETRIC FORMUL,,E <br /> F�✓ ,cis'/,� -.:. <br /> B B B <br /> e <br /> c <br /> i a a c a <br /> G <br /> Right Triangle Oblique Triangles <br /> Solution of Right Triangles <br /> For Angle A. siu =a ,cos= L tan= a b e e <br /> C c ' b ,Cot = a,sec=b, cosec= — <br /> f/ (liven Required a <br /> a, b A, B,c tan A=a= cot B c = a2 a _ s <br /> T 1�-- a 1 +_ <br /> 4 <br /> •A.B, b sinA=a=cosB,b=%/ c+a) c--a =c�1—al <br /> B. b, c B=90°—A,b=a cot A,e= a <br /> sin A. <br /> b B,a, B-90'—A,a = b tan A,c= b <br /> cos A. <br /> e B, a, b B=90°—A,a=e sin A,b a cos A, <br /> Solution of Oblique Triantles <br /> res . Required a sin B <br /> B; b, c, C b = ¢inA ' C = 180°—(A+B), e = asinC <br /> sin A <br /> b sin A <br /> a, b B,e, C sin B= ;C= 180°—(A-{-B),c = a sin C <br /> ✓�-r Z G, .. _ a sin A <br /> ay b,T A,B,c A+B=180°—C,tan?(A—B)—(a—b)tan (A+B) <br /> • r' <br /> e = <br /> a sin C a b <br /> sin A <br /> e d B C a=a+b+e x .j;s- s—c <br /> , , 2 ,sin sA—V b <br /> be ' <br /> sinaB= ( Xs—c ,C-180°—(A+B) <br /> ac <br /> + <br /> �- <br /> o Area s.Q 2 c,area <br /> v A, b, c Areaarea b e sin A <br /> = <br /> -2 <br /> A,B,C,a Area area = <br /> a2 sin B sin C <br /> _ 2.sin A <br /> REDUCTION TO HORIZONTAL <br /> " Horizontal distance=Slope distance multiplied by the <br /> cosine of the vertical angle.Thus•slope distance=818.4 tt, <br /> Vert. at►yde= <br /> 0':5° From TOZ page It cos ti°10'= <br /> UK' H04zoeta�Alstaooe-44AXAp6Y+iMOD ft <br /> p dHiaorfzoataE'distanee also=Slope distae of vertical nce minus sl <br /> lope <br /> ' <br /> -Fame, res�I1i6 tohnnprecediing eexample,lthe With <br /> l tat d3staaep fag reanit is obtained.Cosine 60 10'=A8 I—jm=.ONL <br /> 81A4X fIDt1=1 .818.4-1.81=mac ft. <br /> When the 1'fse is known,the horizoahl distance is approzoWeIy:-the slope dist- <br /> ance less,the spare of the Ilse ..vfdgd 4Y twice the slo distance, Thus:rise=14!t; <br /> s ope <br /> aimd' lam <br /> 3 <br /> — — -I ass - <br /> 's v <br /> we <br /> V <br />