Tli,'IWNOMETRIC FORMULA. .. .
<br /> 7{�
<br /> B
<br /> Z4 p a a a a a
<br /> ',
<br /> r
<br /> S G .0 1 .7 p id -T lTo `1 d C
<br /> � 11 b C b
<br /> 1 Right Triangle Oblique Triangles
<br /> r
<br /> '� ! 9, � .3 �� � 9 6,•f y 7 Solution of Right Triangles
<br /> / 9 r �. 3 _ Z 9 3 y For Angle A. sin = ,cos= 6,tan— b,cot=a sec—b, cosec= °—a
<br /> 6i�1• b 9 �-4 Given Required I a
<br /> G > 8�0 3
<br /> 3. 07 7 a, b. A,B,a tan A=b= cot B,c = a= =a 3 {-a
<br /> 33 • � '
<br /> 4 o g 1!o -lfaL-_ a c A,B, b Bin A—^' COB B b=
<br /> 11 02
<br /> (,,/ J �qr 33 / 7 a B, b, a B=90°—A,b =acots4,c= sin A.
<br /> .1 0 . .f. �o +� b
<br /> 34 Z X B,a, c B=90° —A,a = b tan A,a=.
<br /> cos A.
<br /> J� p3 S('Q (r-.Z� _ . y 4
<br /> a% B,a, b B=90°=A,a=c sin d;b=c cos A, '
<br /> j,Z 14 3+ Solution of Oblique Triangles
<br /> S 9C 7,Y ven Required main B a sin C
<br /> l7./ f P U,Y brS�f p,l.,6 v Bx a b, �' G' b sin ' C = 180°—(A+B),a= sin A
<br /> 7T ! . !a / ? L p b sin A ,— a sin C
<br /> 4!G � a�b I3,c, �' sinB= a ,C= 180 (AtB).a= sin
<br /> f "�f �,3 7
<br /> 44.14 9 3 °9. o.sb s a,b,.C A, B,c A+B=.180°—C,tan (A—B)= a—a)a+bA+B)
<br /> .eL'—�142 01? ,�.� X..4'1( :.�< C sin A ,.
<br /> 17.1 3,/'.F v1{° 3 �7, a �.b }e j
<br /> e.3? 1s'3 f 7y b: a A.B,.0 a— 2 ,sinIA'—A be '
<br /> c7.02 Ga"I hod 3,9�r .r
<br /> v Af q V4 C• 71 sin B= e—c IE ,C=180°—(A+B):
<br /> c a 16 2.� �s-�3-P� a c
<br /> Gay'3 V.
<br /> 3 7l ! J"' 0%,b, a Area 8=a+2b+c, area = s e—aT s— ) s—c
<br /> Sri Z 30 [ 39 0¢•
<br /> s 6.1-3 / fl 1F ! 18 t��3 p A;b, a Area area = b c 2 A
<br /> a2 sin B sin C
<br /> 1 8 3 ! re> A,B,C,a Area area = 2 sin A `
<br /> s c J yrf� �,4 f
<br /> RE1?UCTION TO HORIZONTAL
<br /> s Horizontal distance=Slope distance multiplied by the'
<br /> 1 p p Z 1 X,f JAG q_I Z �'; r pcF Vert.angle e of thevertical
<br /> From.Table,Page IX cos 6°ld
<br /> �.���' l a�� d 9869. Horizontal distance=319.4X.8869-1&l)9 ft
<br /> 77 'r• y y °�o� �e distance timesorizontal t(1--cosine of nce �veerrtiical,angle?oe minus
<br /> �W ti h
<br /> Y7 3 3 y _y !� y same figures as in the prseediag example,the follow-
<br /> ing result is obtained.Cosine b°!d=.896&1—.�bB=.ON11
<br /> r 319.4X.0941=1.31.31&4-1.81=31&09 ft Y'
<br /> ,�o v y When the alae ls htmwn,.the horizontal distanee is appraalmately—the slope dist
<br /> t t L 3 3 $ ants less the stluipe otthe rise divided by twice theelope distaa�a ,,Thos:rise=14 ft„
<br /> �__ opt dlstaaop i it.
<br /> IL r�'
<br /> ` � #dt�alDee+�l4.d-+tX>IA&d•' �'
<br /> •MADE IM C:4Sl.
<br /> Y •
<br /> 01.
<br /> i o
<br />
|