Laserfiche WebLink
Go � sL.wf� � J �� J <br /> ,y <br /> TRIGONOMETRIC" POk5tbL& <br /> Aj <br /> ------ <br /> 53 l, I1 <br /> a <br /> �% <br /> /1 ' 4 C s!. �G ? Q 1 b O b <br /> V., g +, Right Tribe L�Obligee Trio'ag1j, <br /> 1 '/. 40 Solution of <br /> Right TntsEnglea. <br /> 9 7 <br /> _-�. s- Poe AnoeA� tin.s 0,--C,tan– b,cOi_ a C 0 <br /> • i 2 7� .�. / 3 - _ 6, b r cosec m <br /> Given- Required a <br /> /`/ a, b A,B,c tan,t='b a Cot$,a N/aT+ a V1+ <br /> a' <br /> FJ`_3 a, c A B, b naA=a—008B.b—%I +a c—a sa 1—a <br /> d.7 <br /> A,a '$r b, a B=90°—A,b =acot A,6a a <br /> i! sin A. <br /> Y�i 5 t i y� 9, b B,a, c B-900—A,a = b tan A,c= <br /> 7 J cos A. j �_3 <br /> A, o B, a, 'b B—90°A,a =e sin A,b= e cos A, <br /> 974 37•4dri"ti/ Solution of Oblique Triangles 3 1 <br /> 1/ (liven Required a sin B a sin s <br /> , d, B,a b, c, C h= ' C= 180o—(A+B), <br /> vsinAc = <br /> !' sin A <br /> b sin A <br /> � s!, a, b B, c, C ein B= a ,C= 180°—(A-r-B),o = a sia a <br /> sine <br /> a, b, O A, B,c A+B=180°—C,tan,}(A-.-B)—(a—b) jn')(A+'B) <br /> asin a a+ b <br /> sin A <br /> 3. 8�' ` a, b, o A B, C a=a+— b+ <br /> 2 ,ein}A= <br /> sin B= <br /> 2 "- a c 'C=180°—(A+B) <br /> a, b, a Area 8= +b c, area = s(s—a e— <br /> A, b, c Area area = bas^ in L l J <br /> as sin B sin a <br /> Area area _ ------- 7 <br /> U d d D REDUCTION TO HORIZONTAL <br /> Horizontal dis hm'&Slope distance aalt[pW b7 the <br /> VerL ofthe vertical#Psa1e.•4hus.slope <br /> r a� 1e=6'•10.- From T,h1%ped I7L O'b id <br /> h- .�•' 3 eYi® xerimnta3'dLtanoe—M&W.ai9=3"tL <br /> 1'O Hod rizo talmeistance also eta diehnee minus slop <br /> same fhmree as is the p • coWith file <br /> 'l inQ result is oi = <br /> AWL <br /> OW- <br /> - 818 4X.00II=.1.91.E1&#-181=fif108 it <br /> iV3ea th(triae is known,the herizotital distance is aDproslaaatel .—the slope dist- <br /> - <br /> �' sly�tbw sgture of the rise divided by tadoe theX�k �va:rile=edit.. <br /> pe distaaoe-8Q8•# . <br /> _ '` . - a�c.am e'•g°�a-off_ ffi it. <br /> NAN IN Y.N.A. <br /> e <br /> IN <br /> e <br /> , <br />.. - 0 <br /> w <br /> go <br /> ar ; <br />