Laserfiche WebLink
I✓ MLD 0001< 44 <br /> /?,t+J =iii. o i i <br /> 3 7 3- <br /> •�� 3 IMPROVED TABLES <br /> 7- yr W. 7 • r 7 3 AND <br /> INFORMATION <br /> j <br /> � a <br /> 3 f-trt� goy, �j- r,td <br /> CURVE FORMULAS <br /> j <br /> Radius--R—"5,0 <br /> n.n 1)Degree of Curve=D and sin.;==$(2) <br /> Tangent—T—Rtap (3)Length of Curve=I,=10 D(4) <br /> Middle ordinate—M—R(1—cos.A°z) (5)—Rvers s (6) <br /> Extems1=E=Tt=Ar(7)=R+cos.s°—R(8)=Reneec z(9 ) <br /> Long Chord=C=2 R sin.°a (10) p�entral Angle <br /> f <br /> EXPLANATION AND USE OF TABLES <br /> Stations.—Given P. I.==Sta. 161+60.35 to find Sta. of P. C. <br /> j and P. T. p==620 10' D-8° 20'. From Table IV for 1°curve T= <br /> j 3454.1 and=8 X114.49 ft. From Table V correction--.36 or T <br /> 414.85 ft. P. .—Sta. P.I.—T=187 +45.50. Also from (4) L= <br /> 740.00 and F.T,—Sts.P.C.+L==164+91.50. <br /> Off"ta.=Tangent offsets vary (approximately) directly with <br /> j D and with Irq of the distance. Thu$ tangent offset for Sts. <br /> 158 on above curve 2.14 ft.found as follows, From Table III tangent <br /> j offset for 100 ft.�7,27 Et. VIA&nee=158--Sts. P. C,=46.50 hence <br /> offset-7.27 ( =a-100)x.16 ft. pAlso square of any t�ietance <br /> tangent tvidedwo curve Thus us (T? <br /> 6 ft distance from <br /> angent <br /> t 4.�i=w(2a <br /> —Dsfeetion ane= D for 00 ft. D for b0 ft. <br /> ete: For o It. mja B x,C x °or�efl.-fors 1 t.from Table <br /> III a C. Po; .IffB stb0ti8 curvs=.3 a 64;5 a& =186.2' or <br /> j 2° 162',0966'x 64: 1882'fmm`Table III. For Sts. lg9 defies- <br /> tion uagle�►2°1g;2''�g+90' +2�6°26.2',etc. <br /> �q�rnele.�1lda�r�'bs.found i1n similar manner to tangents. Thus <br /> E for cine, Is Jlu�7. For frgm Table IV for l°curve E=98tl.8 <br /> forfrom Teb1e V correction—.10 or <br /> 42 ft18Whst Is rYsen and E is sdessured and found to be <br /> IV E---M.9 and +42=-6.5 or D- <br />