Laserfiche WebLink
XII Natural Tr f !� ,l c� 4';6 TRIGONOMETF4C i�3ltl�[UL� S' <br /> ._i 1 <br /> Angle.Sin. Tan. Soo �- S 1,1G`- /J ..� .^ 7 7 3 J Z <1 i <br /> j <br /> - 3 a <br /> y L� -3) 3 I. a o ` ► b 3��� <br /> _ Right Triangle <br /> .SS C <br /> ��O61i ue Triangles <br /> Solution of Right Triangles }I <br /> i s / iy, i For Angle sin = ,cos= o ,tea= b ,cot = b,sec= b, aosie e <br /> �- (liven Required a <br /> 7 7 a, b A, B + 3 .+ <br /> ,e tanA=b= cotB,c = aE = a } �_ <br /> a' c A,B, bsinA_—=conA b=\/ o a e—a =o�Y—a <br /> e <br /> A,a B, b, c B=90°—A,b=acot A,c= a 3/, / <br /> ��- sin A, d <br /> A, b B,a, c B—90°—A,a = b tan A,c= b 3. 4(7 `1 <br /> m ----- cos A�-7 ,7 of Oblique Triangles <br /> 9 AG' <br /> 35 .b7s A.,�_ lc �. A,c B, a, b B=90°—A,a=e stn A,b=c cos A, �:�� 4- l <br /> 10.5766 1 Solution' G, <br /> Given Required <br /> 3 .S3o7�4 �� _ 7 _ SJ ...Z A, B, a b, e, C b = sin A ' C= 180°—(A-I B), c = 81i a� ;r <br /> 583F; !r ` � -- <br /> .5s:. ,! j .1 A, a, b B,e, C sin B= b ar30 ia Ari = 180°—(A {-B),c = sin A <br /> a, b, C A, B, c A+B=180°—C,tan z(A—B)— a—b tan A B) <br /> 20.592, ZU — , <br /> 30.5948.��/ F- •l •3 _ a sin C a+ b <br /> 40.5972.' <br /> 50.5995.1, <br /> JC�ff <br /> 0.6041: �, J / «rya, b c A, B, C s=a+2+c sinjA=_Ils <br /> T V <br /> ✓.y be <br /> 8 .6088.76 . 2 i � v 3y <, b6. / sin'B=�(1 a ,C-180°—{A+B) <br /> 40.6111.772 1.263a % — <br /> .6134.778 1.2661 1.0 /"/ l,'3 3 7 a b <br /> 3 a, b, a Area a= + +°, area = s(e—a s— )(s—e <br /> 86 .6157.78131.26901.62, ;, r 2 <br /> 10.8180.78 1.27191.618; b c sin A <br /> 20.6202.7907 1.2748 1.612] / f ' ' A, b, c Area wren = 2 <br /> 30.8225.79541.27781.606' r-i g r_. <br /> az sin B sin C <br /> 40.6248.80021.28081.801 i._- A,B,C,a Area area = -- <br /> 50.8271.80501.28381.595 1.242 6 ' 2 sin A <br /> REDUCTION TO HORIZONTAL <br /> Cosh.Coto.Cosec. See. Tan. ShL Mole Cosh.Cote,Con. Z11-5 Horizontal distance=Slope distance multiplied by the <br /> ' cosine of the ve�ticalangle.Thum alopedistance X919 41 G <br /> ,/8 a�gte�pe Vert angle=6 IW. From Table,Page IX cos b°10,= <br /> 3 o- ° 1 3-i _ loge 1e Horizontal d1stance=819.4X.9959-31800 ft. <br /> Y4— <br /> $ <br /> Aro a Horizontal distance also=Slope distance minus slope <br /> distance times(1—cosine of vertical angle). With the <br /> same figures as in the preceding example,the follow- <br /> /61-34' Horizontal distance ing result is obtained.Cosine 50 10'=.8960.1—.go69=.004L <br /> 3 y s19.4X.60t1=t.$L 319.4-1.31=31809 tt <br /> 7mt <br /> _�.�� When the rise is known,the hodzentai dhslax is RPMwimatel ••—the slope dist. <br /> 1 ' ante less the square of the rise divided by tries the slope distance. Thus:rise=14 ft., <br /> slope distance-300.8 ft. Horizonhd distauee M s-14 X 14� 8-0.3Z=30S 98 ft. <br /> 2 X 3426 <br />