Laserfiche WebLink
39S "q, 7 7 <br /> (,^.2 TRIGONOMETRIC FORMULrE ' <br /> 4.J ?76 B B 14,1 B <br /> 0"F•�J� 32. .7 4 <br /> A A C <br /> b C } b C b t <br /> 7f Right Triangle L-- Oblique Triangles—_-1 <br /> 9 3 , f - Solution of Right Triangles <br /> For Angle A. sin=S, cos=��,tan=-b°,cot-a,sec=b _.E,Cosec_L <br /> 24 3 �r Given Required j <br /> 3v; v 3 a,b A,B,c tan A=b=cot B,c= a'-f b==a <br /> J ,T a <br /> c . ?' a,c A,Beb sin A=�=Cos B,b=N/( -a)=c i-°i-, <br /> 3� . <br /> 1; V 39 ) ` <br /> A,a B,b,c B=90°-A,b=a cot A,c-sin A. <br /> j 3 <br /> A.b B,a,c B=90°-A,a=b tan A,c=cos A. 1 <br /> r L Q <br /> l `� A,c B,a,b B=900-A,a=c sin A,b=c cos A. f <br /> , Solution of Oblique Triangles <br /> /1 `: �--�'"' .r►�J Given Required <br /> 1 �, `1 8 3 7•ff 4 ` A,B,a b,c,C b= sin B <br /> sin A 'C=180°-(A-i-B),c- sin A <br /> 39Sin I <br /> 3 - � 8 A,a,b B,c,C sin B-b sec sin A A <br /> LC=180°-(A+B),c= <br /> / �f p 4, .�1 .� <br /> f 3 -o v a,b,C A,B,c A+B=180°-C,tan*(A-B)=(°-b)tan+b B) <br /> 3 9 4/o J— c=asin C <br /> .�•✓ ' '� 3 �'- �"- 3 .P 8 -�1�- sin A <br /> i j M a 3 3,I 3 y � (2 o, 9 ,C a,b,c A,B,C s=a+2+c,sin*A- (s-b)�s-c' <br /> 3. �4r c�¢ <br /> ✓; 3--�' 3 .� �Al 1J sin�B= (s-a�s-c>,C=180°-(A I-B) <br /> ^� 3 3 4. v � a,b,c Area s=°+2+c,area= s(s-a) (s-b) (s-c) <br /> 0 <br /> 3J .7 9 fi 9 b e sin A 3•/.SF <br /> q. � A.b,c Area area- <br /> 10 '-- 3 ,1 y p• A,B,C,a Area area= V it— <br /> at sin B sin C 31- <br /> g, <br /> h J% 3 9 . f 2 sin A <br /> i ` r ' '� ✓� y REDUCTION TO HORIZONTAL_.' <br /> r <br /> 3 '7 ti ��.,,,. Horizontal distance-slope distance multipby the 3•L' <br /> 31 - _1 cosine of the vertical angle.Thus,for a slope distae oe of est <br /> 3. � �q . -. 400.6 ft.and a vertical angle of 4'40'-the cosine of Sia <br /> 3%F <br /> if 1 ti / 3 �, 4.40'.taken from a table of natural trigommetrical Vim„t+t+g 11 <br /> functions.-.9967.and horizontal distance-400.6:.9967 <br /> _- f6 y. 402.27 ft. Horizontal distance <br /> .: - y k� - Horizontal distance also-Slope distance minus dope dig- <br /> 3 <br /> 9,(� s I,.�,,,,�----6�6 "?j •7 tance times(1-cosine of vertical angle).Using the same figams as in the preceding example- <br /> k p •t '� Cos.4.40'-.9967.1-.9967-.0063.403.6x.0063-1.33 ft.Horizonteldist.-400.6-1.33-40227ft. <br /> When the rise is known.the horizontal distance may be found by the following approximate <br /> rule:-the slope distance less the square of the rise divided by twice the dope distance.Thus, <br /> for a dope distance of 372.5 ft.,and a rise of 15 ft.the horizontal distance= <br /> 372.5-2X3 372.5 <br /> ,5 -.30=372.2 ft. <br /> swillm DItTZOM CO. <br />