Laserfiche WebLink
�3 3'3 k � 7F..z — <br /> TRIGONOMETRM FORMUL& r ' <br /> � v .3 B <br /> iZ- - <br /> ., <br /> F y3_� fr' _sip <br /> v 'r <� cr a,�' / 7 , a 17 7 .i c <br /> A a <br /> b A C <br /> Right Triangle L— Oblique Triangles 774 <br /> - J V ? '''= Solution of Right Triangles -7 6 0 --- <br /> b a b i e'4-70 r✓ <br /> For Angle A. sin = c ,cos= cot = a,sec— h, cosec — — <br /> F le <br /> a <br /> Given Required I <br /> 3 a <br /> y <br /> a, b A, B,c 77 tanA=—= cotB,c = a + 3 =aV <br /> LJ l " • a (c <br /> a, c A, B, b sin A=Q=cosB,b=�(c-1 a —a) <br /> $, b, c =90°— , =acotA = a <br /> i' <br /> sin A. <br /> - - ------- _ a B b <br /> A, b B, a, c B 90°—A,a = b tan A,c= b /. <br /> cos A. - <br /> A,c B, a, b I B=90°—A,a=c sin A,b=c cos A, 7 <br /> r' <br /> 5 f Solution of Oblique Triangles <br /> / J A B Given Required a sin B 77Y--- ,a b, c, C b = A , C= 180°—(A { B) c a sin C <br /> sin sin A <br /> 2 7 A. a <br /> -- - c a sin-0 <br /> b B, , c Bing= ,G'= Iso°—(A } B),c= t <br /> •� c7 y o l •", .4� r��t; a ,,Sjfa A- <br /> b C A B c A+B=180'—C,tan z(A—B)= a—b)tan A} , <br /> a 7 = ry r 3 7 7 J A7 p; c — a sin C a } b <br /> Q b, a A, B, C 8=a, 2 in JA—`li b .--r <br /> 77 .14 <br /> sin;B=�a—aXa—c G,=1A0°4 <br /> ab =(A. <br /> „ r <br /> �J d• a 188 3' �_ 8�, r V ' +c <br /> a, c ac ' <br /> : rea vl;a 1- +2 ,area = a(a—a <br /> A, b, c Area area = b c sin A 7 y b <br /> r <br /> 3 y 2 ' j <br /> sa sin B 8111 C -- . <br /> 3 <br /> A,B,C,a Area area = ' 7 <br /> 2 sin A <br /> a REDUCTION TO HORIZONTAL <br /> Horizontal distance=Slope <br /> l a distance <br /> multiplied bee 9y the <br /> / " 3 ✓ a�stapoe V Hgle verticalcosine of the5 '. angle. <br /> Table,Page IX cos os 50 1W= <br /> Suppe di nce=318.4X.8066-- l&o9 ft. <br /> d ornzontal ata <br /> A 1e Horizontal distance also= ope distance minus slope <br /> 4e °g distance times(1—cosine o7vertical angle). With the <br /> grfigeindseced1Wtll0neifigures <br /> Co ° example,0he =8LHorizontal distance <br /> 31&4X.0041=1.31.319.4-1.31=31&09 ft <br /> When the rise is known,the horizontal distance is approximately:—tbe slope dist- <br /> _ _ ance less the square of the rise divided by Wee the slope distance. Thus:rise=14 It., <br /> slope distanee=302.8 ft Horizsahl distsboe—SMLe— 14=3oy8-0.32=302.28 ft, <br /> F MADE IM V.$.A. e` <br /> w. <br />