Laserfiche WebLink
rr w r t <br /> TRIGONOMETRIC FORMULAE r.iss <br /> B B <br /> o� O <br /> y ., e a c a e <br /> - b . .3 7 - d�9 4- <br /> �.�:} A b C A b o A C <br /> 3' <br /> <'�! 3 Right Triangle Oblique Triatrgl <br /> 3 9Solution of Right Trian <br /> � gle <br /> For An A. sin =a ,cw= b ,tae= a ;cot - b,sec=6, cosec= a <br /> ----- _ <br /> �9 Given red a a b a b a <br /> 5 , _ x +� <br /> - en Requi I <br /> .� --- - a,b A, B,c tan A=—= cot B,c= a _ =a Y <br /> b + a= <br /> n ; + <br /> 7 3 9 <br /> 3 0_3a, a A,B,,b sinA=o =cos B,b=,/ a1—as <br /> y-s 3 3 JS � �3 A,a B, b, a B=90°—A,b a cot A,a= sin,A. <br /> _-_ _ __ <br /> fry , �. f b B a a B=90°—A a = btanA a= b <br /> ---- <br /> , cos A. <br /> t _3 _ ; A,c B,a, b B=90°—A,a=a sin A,b=c cos A, <br /> f Solution of Oblique Triangles <br /> 6797 .- �Jf3 q g <br /> r <br /> in C <br /> �• Given Required a sin B <br /> G3& s l � , A, B,a b' a, C b= einA 'C= 180°—(A+B),e = ' <br /> sin A <br /> b sin A °_ a sin C <br /> A, a, b B, c, C sin B= a ,C= 180 (A t B),a = sin A <br /> b, C A, B,a A+B-1800—C,tan;(A—B)— a—b)tan (A FBh <br /> ;';_ c — <br /> asinC a+ b <br /> y <br /> sin A <br /> k a+b+c I8�) <br /> b, a A, B, C 8= 2 ,sin JA=J b�, <br /> sin jB- ,C=180°-,-(A+B) <br /> ac <br /> 4 s.s_ J; 'f 4 3 `1 S�,—•y a, b, a Area 8=a �-2 F a, <br /> S <br /> -- <br /> ek <br /> A, b, c Area area = b a A <br /> a=sin B sin C <br /> L6gs' ' ?�7y $ 1 ` A,B,C,a Area area = <br /> 2 sin A <br /> REDUCTION TO HORIZONTAL <br /> 9,3 U Horizontal distance=Slope distance multiplied by the <br /> 7 g SJ 3 ; sf -- .y a e cosine of the vertical angle.Thus:slope distance=319.4 tt. <br /> S - �ytsoe Vert. angle=b°101. From Table,Page IX.cos 5111Y= <br /> J Qe e; 8969. Horizontal distance=310.4X.9969=31&09 ft. <br /> ""y y - y _ 9�t� S10 Aog1e z Horizontal distance also=Slope distance minus slope <br /> r a <br /> distance times(1—cosine of vertical angle). With the <br /> ., ., -, •-- l " yr� ;> Ve name figures as in the preceding example,the follow- <br /> r, I. / s V,9 Horizontal distance ing result is obtained.Cosine 60 101=.8968 1—.8969=.0041. <br /> - - = 319.4X:0041=1.31.319.4-1.31=31&09 ft <br /> 3."- a L-'- % - �:' J __•- f �I /9 When the rise is known,the horizontal distance is approximately:—tbe slope dist- <br /> y ;.•3'r y') 7, - 4— ance less the square of the rise divided by twice the slope distance. Thus:rise=14 ft., <br /> slope distaneezr3020 it. Horizontal didanoe=3026--214 X14_=9-0.32=30228 ft. <br /> MADE IN U.S.16 - <br /> i <br /> y <br />