Laserfiche WebLink
e a o r L 7 —j-J..— 7 TRIGONOMETRIC FORMUEfE <br /> I 99 �b lv. B B <br /> A <br /> o b C /G q <br /> A A d" <br /> a C 1 � <br /> h <br /> Rigt Triangle <br /> Oblique Triangles o $ " <br /> 8 r `7s Solution of Right Triangles 0 <br /> !•f =For Angle A. sin = c ,cos= ,tan--fib—,cot= b—,see =a, cosec=,.ell <br /> a�y 3 <br /> ( f j t C1 / 8�O. ��S (liven Required a a $ a <br /> 4 <br /> a, b A, B;c tanA= b= cotB,c = a + s= a 1 � z <br /> %t . p I i {'y{ az <br /> a, a A,B, b sin A=a=cos B,b=%/Ta—+a—)T6--) =a I a2 <br /> 4 <br /> b <br /> "L A, B, b, c B=90°—A,b =acotA,c= a — — <br /> sin bA. _ <br /> �. <br /> A, b B,a, e B=90°—A,a = b tan A,c= cos A. <br /> -3 <br /> c $ <br /> f7 l A,o B,a, b I B=90°—A,a=a sin A,b= c cos A, yob <br /> b 3 1 , Solution of Oblique Triangles <br /> (liven Required a sin B a s n C <br /> ?j y " _ __ -. A, B,a b, c, C b= sin - , C= 180°—(A+B), c = <br /> sin A <br /> 7^ �f_l A, a, b B,c, C sinB= b a A,C= 180°—(A { B),a = E!!2-9�G�'i^ <br /> sin A <br /> •J y <br /> 1"i, ;t �jj `i' ► ay b, C A, B,a A+B O°—C,tan z(A—B)= a—b)tan a_(A+B) <br /> M�'� c = asinC ?+' r1C.d i. <br /> y, '7o \ -.� sin A 4.87 <br /> Q <br /> --� <br /> 1,2'11 •fir� ! 4t <br /> � a, , a A C s=Q�+h+c 2 ,s ,A l8- bs <br /> �Y V' J AL 1 y tC le' ti 5:7`x, (� ing =J e er` f✓ !S <br /> �cTL%n'BI s <br /> ac �C=180°—(A+B)? G 9 <br /> z V <br /> D <br /> a b <br /> a, b, a ren s= +2+c, area = s(s—a s— (s—c 7, <br /> S A, b, c Area area = b e sin A L ^s. a •3 7.4r� <br /> -- y az sin B sin C i <br /> S l 3 A,$C,a Area area = 2 sin A /� I <br /> y ,,, 1 3 J— REDUCTION TO HORIZONTAL <br /> 8 7 4— Horizontal distance=Slope distance multiplied by the <br /> 7 3 z4 C) cosineofthe vertical angle.Thus:slope distance=319.4 ft. <br /> Vert. angle=50 101. From Table,Page IX.cos 50 301= <br /> Horizontal <br /> �. o0e w 9959. distance=319.4X.9959=31&09 ft. <br /> f d - �►. ! ' 6� Arg1e Horizontal distance also=Slopedistanee minus slope <br /> • (0 y A , distance times Ei—cosine ofv Ileal angle). With the <br /> J same figures as in the preced�ei�example,the follow- <br /> Horizontal distance ing result is obtained.Cosine 51101—.9959.j—.9m=.004L <br /> - ✓_ q 319:4X-0041=1.31.319.4-1.31=318.09 ft. <br /> p When the rise is known,the Jwrizontkl distance is apswkimatelyc—theslope dist- <br /> ance less the square ofthe rise derided by tw,,the slope distance. Th <br /> qs:rise=l4 ft., <br /> S I slope distant 3028 ft PlorizonW distasee�g.._14 X14_=".= <br /> u 2,X=16 <br /> MADE IN U.S.A. <br />