Laserfiche WebLink
�. iwN <br /> TRIGONOMETRIC FORMULA t <br /> B B B <br /> •4 <br /> a aIn <br /> a <br /> A <br /> C b <br /> Oblique Triangles- C <br /> Solution of Right Triangles <br /> a b a b o 0 <br /> ' dor sin = a ,..cos a a ,tan= b,cot=a,see=b, COaec = <br /> a <br /> dives lauired <br /> a,b 'AB,a tanA=b® cotB,c = = a 1T a== <br /> A, B, b sin A=Q=coe B,b=�/ a+a a—a =0 1—o <br /> 2 S <br /> Z, S,. ,Aa B, b, a B=90°—A,b—a cotA,o= sin A. <br /> G, S A, b B,a, o B=90°—A,a= b tan A,a= cos A. <br /> G A,c B,a, b I B-900—A,a=a sin A,b=o cos A, <br /> / z Solution of Oblique Triangles <br /> S�l Given Required _a sin B <br /> A, B' a b' c, C b sinA ' C= i80°—(A� �.o = Bin <br /> b sin A <br /> ,3, j 4' A, a, b B,o, Q sin B= a ,C= 180°—(A {-B),o = sin A <br /> '� + <br /> G° F v a b, C A, B, o A { B=180°—C,tan}(A—B)= a—b ttan+ 8 JB <br /> 3 ` i c =asin C <br /> sin A <br /> v" a+b+aa 8—c <br /> A, B, C 8= 2 ,sin JA= b a ' <br /> sinjB=� ,C=180°—(A+B) <br /> c a+b a <br /> E i a, b, o Area 8=. , area — ) 8—E <br /> ` 1 j A, b, a Area area = b o sin A <br /> • � r'` 2 <br /> P <br /> A,B,C,a Area area =as sin B sin C2 sin A <br /> a REDUCTION TO HORIZONTAL <br /> Horizontal distance=Slope distance multiplied by the <br /> cosine of the vertical angle.Thus:slope distance=819.4 ft <br /> s�a4� Vert angle=b°104 From Table,Page IX.cos 50 101= <br /> m 9969. Horizontal distance=319.4X.9969=318.09 ft <br /> �00g . leHorizontal distance also=Slope distance minus slope <br /> distance times(1--3osine of vertical angle). With the <br /> Q same figures as in the preceding example,the follow- <br /> Horizontal distance inti result is obtained.Cosine b°10'=.9959.1—.9M=.0041. <br /> 319.4X.0041=1.31.319.4-1.31=31&09 ft <br /> When the rise is known,the horizontal distance is approximatelWthe elope dist- <br /> anoe less the square of the rise divided by twice the slope distance. Thus:rise=l4 ft, <br /> sy1l 8 ft Horizontal disttnoe=3028-2X3M8—=6—&33=80298& <br /> MACS IN U.S.A. <br /> • <br /> 4 �. <br />