Laserfiche WebLink
T NOMETRIC FORMULIE <br /> 3 v `�z 9� ; ' Gfia �� B B <br /> - 3 <br /> o3 �Qgo 7 � <br /> 7­:; ?- 3. da a <br /> A CJS`S`5 <br /> C <br /> ✓ g8_: 1 8 Y' Right Triangle Oblique Triangles <br /> (��- <br /> .4 <br /> 4W" . Solution of Right Triangles S(�, <br /> 5 C Ci 4. . r•.. <br /> r '�' M For Angle A.. sin =a cos- b tan- a b a <br /> fly ' �.ys 2 •s g c = c = b ,cot = -,sec= , cosec= <br /> c2 a b' - <br /> _ ✓ a <br /> r c 1�9 ' �_ Given Retluired <br /> a, b A, B a a <br /> ,c tan A= = cot B c = az = 1 — <br /> as <br /> q <br /> T a <br /> z <br /> a, c A, B, b `sin A=a a2 <br /> =cos B,b= c�a (c-a =a 1-"2 <br /> A,aB, b, a B=90°-A,b =a cotA,c= a <br /> sin A. z i. <br /> % <br /> r / A, b B a, a B=90°-A a = b tan A c= <br /> cos A. <br /> c B, a, b B=90°-A a=c sin A,b=e cos A, <br /> G y <br /> 5­7 :'; S- 5�a l /�� /�rt Solution of Oblique Triangles <br /> x , Given Required <br /> 01 �7S - �� __ a sin B °- a sin C <br /> B B,a b, c, C b sinA ' C= 180 (A+B), c = sinA <br /> 5I,6r <br /> yZ �� 4po, b B,c, C. sinB= bsaA,C= 180°-(A+B),a = aeiA <br /> • sin A <br /> b, C A, B, a A-�B=180°-C,tan J(A-B)= a-b tan A B <br /> q2 F� gN3 a _asinC a+ b <br /> -- A. sin A <br /> ` ! 0 3 b, a A, B, C 8—a+—2�°,sinjA=�8 be <br /> r� - <br /> I yg J 7 3 sin$B=� <br /> %' ( a ,c-180 (A+B) <br /> 3, °. <br /> 3 -7 q b, C Area 8=a+b+8, area = 8(8-a 8- (8-c <br /> A, b, c Area area = b e sin A <br /> 2 <br /> A,B,C,a Area area =az sin B sin C 2 sin si <br /> L ro L REDUCTION TO HORIZONTAL <br /> Horizontal distance=Slope distance multiplied by the <br /> 9 • 3 ce cosine of the vertical angle.Thus:slope distance=319.4 ft. <br /> iy a ytab Vert. angle=50 Id. From Table,Page IX.cos 5°10'= <br /> L� J' I �' lope a� 9959. Horizontal distance=319.4X.9959=31&09 ft._ 5 Ap¢Xa Horizontal distance also—Slope distance minus slope <br /> v { 9 Ve <br /> distance figures <br /> times(1—cosine of vertical angle). With the <br /> as in the preceding example,the follow- <br /> orizogtal distance ing result is obtained.Cosine 510'=.9959,1—.8859=.0041. <br /> 31&4X.0041=1.31.319.4-1.31=31&O9 fL <br /> When the rise is known,the horizontal distance is approximately:—the slope dist- <br /> ce <br /> Heless the square of the rise divided by twice the slope distance. Thus:rise=l4 fL, <br /> pe distance=302.6 fL Horizontal disianay.4=6—14X 14—_4M p,32--9022B ft. <br /> S X 302.6 <br /> . YIIDa IN Y.a.ti <br />