S TRfGONOMETRIC FORMUL:&
<br /> 3 yy� y z �
<br /> a a c a r« �
<br /> ,- - ----
<br /> At 6 U b
<br /> 7,� le Oblique Triangles
<br /> 3 ' 1 Z 3 ��7S -lT solution of kiight-Triangles
<br /> f Q7a b b
<br /> ✓ Y� / S l0.V �+ _ For An& �-sin = ,co,= a ,tan"° b,COt= a,BeC=�, COBCC= 0
<br /> Given *squired a
<br /> �/ ZC i... a b A, B c tanA=! a a _
<br /> 3 r^ " , cot B,a =.v/� _ a 1 I- —
<br /> D 1
<br /> 7,3!„ �}
<br /> L 3�Gtv i S 2 3� a, a A, B, b sin A=C =cos B,b=
<br /> Z G S- v A,aB, b, a B=90°-A,b =a cotA,c= a �1
<br /> sin A.
<br /> A, IM,a, o B-90 -d,A s b tan A,e,=
<br /> z -� i n coo A. ? c
<br /> a, b I B=90°-A a `_osin A,b=acoo A, L.✓S',
<br /> C!a ",,,�--""-`3 Solution' of ObkNe Triangles 11leanired
<br /> b a sin B C= 1 8K° + B). =a sin C
<br /> J it 2 S,`• :=s.a sin A -(A sin A
<br /> b sin A
<br /> ✓ ` �,e, 0 , sin B= ,fJ 180°-A d sin C
<br /> a' ( -f-B),a = sin A
<br /> a b, �A,B.a A B- a-b tan A
<br /> -} -180 -C,tan J(A-B)=�--�—j(�EB
<br /> a = asin C afb
<br /> 3 ) �.. . . Z p $ 3 9� sin A Z Z-1
<br /> 3 , a A, , s -.AA
<br /> __ a- a-c .7G
<br /> a, bBC _
<br /> a-_, -ter
<br /> sin B=�a L,,_f,SO°-(A+B)
<br /> a-a��, area = W(8-a6 a- a-o
<br /> A, b, a Area area = b e sin A
<br /> Z / ar sin B sin C —
<br /> A,B,C,a Area area =
<br /> 2 sin A
<br /> REDUCTION TO G HORIZONTAL.• z s. Horizontal distance-Slope distance multiplied by the
<br /> cosine oithe vertical Thus:slope distance=819.4 it.
<br /> Vertangle=b id. From able,Page IX cos 6°1N=
<br /> j 9969 Horizontal distance= 4X.tY69=81&Q9 ft
<br /> Iiorizontal distance also=Slo distance minus slope
<br /> distance times(1-caalne of ve le) With the
<br /> same figures as is the precedh _ the follow.
<br /> hT.
<br /> H0rlt WM1 diatatbe in�result is obtained,Cosine 6°1�yy -.y@ .ppb, °
<br /> When the rbte is kn 8t9 4X.OW1=181.>f164-1.81=81apf g'
<br /> s th sq of the rise dihe vided b�dis al aPDristanately:-the slope dist-
<br /> �1 Y tNiei a slope distanea Thos:rise=141st.
<br /> ft. Horizontal dista $J14 X 14
<br /> Crw
<br /> ap
<br /> s
<br /> M
<br /> ,A ��
<br />
|