Laserfiche WebLink
S TRfGONOMETRIC FORMUL:& <br /> 3 yy� y z � <br /> a a c a r« � <br /> ,- - ---- <br /> At 6 U b <br /> 7,� le Oblique Triangles <br /> 3 ' 1 Z 3 ��7S -lT solution of kiight-Triangles <br /> f Q7a b b <br /> ✓ Y� / S l0.V �+ _ For An& �-sin = ,co,= a ,tan"° b,COt= a,BeC=�, COBCC= 0 <br /> Given *squired a <br /> �/ ZC i... a b A, B c tanA=! a a _ <br /> 3 r^ " , cot B,a =.v/� _ a 1 I- — <br /> D 1 <br /> 7,3!„ �} <br /> L 3�Gtv i S 2 3� a, a A, B, b sin A=C =cos B,b= <br /> Z G S- v A,aB, b, a B=90°-A,b =a cotA,c= a �1 <br /> sin A. <br /> A, IM,a, o B-90 -d,A s b tan A,e,= <br /> z -� i n coo A. ? c <br /> a, b I B=90°-A a `_osin A,b=acoo A, L.✓S', <br /> C!a ",,,�--""-`3 Solution' of ObkNe Triangles 11leanired <br /> b a sin B C= 1 8K° + B). =a sin C <br /> J it 2 S,`• :=s.a sin A -(A sin A <br /> b sin A <br /> ✓ ` �,e, 0 , sin B= ,fJ 180°-A d sin C <br /> a' ( -f-B),a = sin A <br /> a b, �A,B.a A B- a-b tan A <br /> -} -180 -C,tan J(A-B)=�--�—j(�EB <br /> a = asin C afb <br /> 3 ) �.. . . Z p $ 3 9� sin A Z Z-1 <br /> 3 , a A, , s -.AA <br /> __ a- a-c .7G <br /> a, bBC _ <br /> a-_, -ter <br /> sin B=�a L,,_f,SO°-(A+B) <br /> a-a��, area = W(8-a6 a- a-o <br /> A, b, a Area area = b e sin A <br /> Z / ar sin B sin C — <br /> A,B,C,a Area area = <br /> 2 sin A <br /> REDUCTION TO G HORIZONTAL.• z s. Horizontal distance-Slope distance multiplied by the <br /> cosine oithe vertical Thus:slope distance=819.4 it. <br /> Vertangle=b id. From able,Page IX cos 6°1N= <br /> j 9969 Horizontal distance= 4X.tY69=81&Q9 ft <br /> Iiorizontal distance also=Slo distance minus slope <br /> distance times(1-caalne of ve le) With the <br /> same figures as is the precedh _ the follow. <br /> hT. <br /> H0rlt WM1 diatatbe in�result is obtained,Cosine 6°1�yy -.y@ .ppb, ° <br /> When the rbte is kn 8t9 4X.OW1=181.>f164-1.81=81apf g' <br /> s th sq of the rise dihe vided b�dis al aPDristanately:-the slope dist- <br /> �1 Y tNiei a slope distanea Thos:rise=141st. <br /> ft. Horizontal dista $J14 X 14 <br /> Crw <br /> ap <br /> s <br /> M <br /> ,A �� <br />