Laserfiche WebLink
V <br /> 4R <br /> c- <br /> - ti �til�}Ori #i�- f31a$ •� <br /> G� � ,,3 7 Y� B B B <br /> .-- �f' , <br /> �- A <br /> , o �b a b <br /> Oblique Triangles <br /> Solution of Right Triangles <br /> a b a b o <br /> For Acle : do = o ,cos— o ,tan= b ,cot = ,sec s—b, cosec a <br /> (liven Required 1 � <br /> a, b A, B,o tan A=b=cotB,a a } '=a 1 I ! <br /> \ a <br /> a, 0 A, B, b sin A=o =cos B,b=%/ e+a o---a =c I—!'- <br /> i' o <br /> B=90°—A b =acotA a= a <br /> sin A. <br /> c� AAb. J 3t, • B=90°—A,a = b tan A,c= b <br /> cos A. <br /> b I B-94°—A,a =e sin A,b=c cod A, <br /> S6lution of Oblique Triangles <br /> sin A ' C= 180°—(A h B), ., a sin C <br /> J T u sin A <br /> ,r L ) c� C sin B= b sin A,C=180°—(A-(-B),a = a <br /> sin C <br /> re J sin A <br /> Ab, ,B,o A+B=180°—C,tan (A—B)= a—b tan bA}8), <br /> o — <br /> aeinC <br /> }...�.'� � sin A <br /> t _ <br /> a b, o A,B, C .=aa t,sin <br /> , <br /> ( -r <br /> sin J1B_�a a o ,C=180°—(A+B) <br /> �t v <br /> i <br /> a b, e s= 2 , area =Vq <br /> b c sin A. <br /> A, b, crca area = 2 <br /> _a 2 sin B sin a <br /> d,B,C,a Area area 2 sin A <br /> r <br /> REDUCTION TO HORIZONTAL <br /> Horizontal distance—Slope distance multiplied by the <br /> cosine of the vertical angle.Tb ks:slope distance-319.4 ft. <br /> 1 �gts4°e 'Vert. angle=8°IW. From Table,Page IX,eftb°1W= <br /> .6966. Horizontal 1llstanoe-31W.9VA-313.06 ft <br /> 1 i gl bAg1e Horizontal distance also=Slope distarticalnce minus slops <br /> distanfiQnns as i the <br /> tp�(1--cosine <br /> preco of <br /> ipg i amVt t erffoilow-- <br /> Horizontal distanos. ing result is obtained.Uine b�IW!= 8 ,1—.6689=.mL <br /> 919.4X.0041=1.31.819.4-1.91=51&0 ftWhen the rise is known,the horizontal distance is apprortmately: the slope diab. <br /> less the square of the rise divided by twice the slope distance. Thus:riise=14 ft., <br /> distanee=302.6It. 'Horizontal distance-305L1 =SOZ6-0 <br /> 2x302.6 <br /> f <br /> V - s <br />