Laserfiche WebLink
L / <br /> n / 3�/ Z 3. TRIGONOMETRIC FORMUL.E <br /> oG a & 3 , <br /> �•� �/ zZ — B B <br /> a ° a a a <br /> AA <br /> �_b a <br /> a <br /> Right T�sngle . Oblique Triangles <br /> Solution of Right Triangles <br /> For Angle A.iia =a,cos= Q,tan= b,sot=a,sec=b, cosec <br /> / a <br /> [given Required a $ � <br /> a, b A;'B,c tan A= b= cotB,o = az+ s = a <br /> Z <br /> q ay c A, , b sin A=!=cos B,b=� o+a o—a =c J 1—a <br /> r <br /> A, B=90°—A,b =acotA,c= a <br /> sin A. -- <br /> b B,a, a B=90°—A,a = b tan A,c= b <br /> S _ Z - cos A. <br /> �A,a B,a, bB=900—A,a=e sin A,b=a cos A, <br /> �51 <br /> Solution of pblique Triangles <br /> � � "�Given :_ Required B °— asin C <br /> A, B,a b, e, C b = sin AC (A+B), a = <br /> l y sin A <br /> bsin A <br /> / 1 ca, b B,e, C sin G„ <br /> = S = 180°—(A+B),c = asinC <br /> _ ? r a sin A <br /> g'), \div a, b, C A, B,a A+B=180°—C,tan (A—B)= a—b)taB) <br /> an I(A+ <br /> �J� r <br /> a sin C + <br /> sin A <br /> a <br /> 3/ a, b, o A, B, Cs'= 2 ,sin;A= b a <br /> a a ,C=180°—(A+B) <br /> a; 9�:e , rea s <br /> , area = a_T8—a s— s—c <br /> A, b, c Alga area = b a sin A L <br /> 7 i <br /> 2 � u <br /> Wsin Bsin C <br /> B,C,a Area area = 2 sin A <br /> REDUCTION TO HORIZONTAL <br /> Horizontal distance—Slope distance multiplied by the <br /> fcosine of the vert'co langle-Thus:slope distance=319.4 ft <br /> ee <br /> Z) Vert angle=b°10 From Table,Page IX.Cos 60 lot= <br /> } \ Z �5tlm • .9959. Horizontal distancq=319.4X.9959=31&09 ft <br /> A¢g1e Horizontal distance also—Slope distance minus slope <br /> Z(? .9 4e distance times(1—eosine of vertical angle). With the <br /> rn ) same figures as in the p example the follow- <br /> /�.}, Zj• N \ Q Horizontal distant ing result is obtained ►afsarmd=.9069.1-.9969=.0041. <br /> 43 13 319.4X.004141.s1.810.4-1:1q ft,v When the rise is known,the horizontal di is tely:—theslope dist- <br /> ce lease square of the rise divided by twice.the slo Thuss rice=l4 ft., <br /> ope distance=SD8.8 it. Horixontal 32=302.28 ft. <br />! • <br /> i <br /> i <br />