Laserfiche WebLink
q �, r/v haw TRIGONOMETRIC FORMUL/E <br /> v, I�� B B B <br /> { <br /> c a e a a a <br /> CA b QA b C <br /> Right Triangle Oblique Triangles <br /> Solution of Right Triangles <br /> ' I For Angle A. cin =a,cos= b tan= a,cot = b,sec= o, cosec =o a b a b <br /> a <br /> (liven Required <br /> a,b. A, B,o tan A=b= cotB,c =V--2—+T2-= a 1 { ��. <br /> a, c A, B, b ` sin d=a =cos B,b= a a a--a <br /> a � S=c.Jl-`os <br /> A,a B, b, a B=90°-A,b =a cotA,a= a <br /> sin A. <br /> A, b B,a, a B=90°-A:,a =b tan A,c=cos A. <br /> j\ <br /> _jC r' A,a B,a, b B=90°-A:,a=c sin A,b=c coo A, <br /> v Solution of Oblique Triangles <br /> Given <br /> tl, B,a b, a, C b = snA ' C= 180°-(d 1-B),a= sin <br /> b sin A <br /> a i A, a, b B,c, C sin B= a ,C= 180°-(A {-B),o =asin A <br /> / a, b, C A, B, a A+B=1.80°-C,tan (A-B)= -b tan <br /> aU4±M <br /> ✓'� a+ b . ' <br /> c = <br /> a sin C <br /> sin A <br /> a, b, o A, B, C s=a+2,sin jA= <br /> in'B— <br /> a(� ,C=180°—(A+B) <br /> 7 v a, b, a Area 8=a 2, area = a(s—a a— (8—a <br /> A, b, c Area area = b o sin A <br /> $ ,e e ----- 2 <br /> 4 3 z r a2 sin B sin C <br /> A,B,C,a Area area = 2 sin A <br /> REDUCTION TO HORIZONTAL <br /> — Horizontal distance—Slope distance multiplied by the <br /> u cosine of the vetticalangle.Thus:slope distance=319.4ft. <br /> 'i. bce Vert. angle=5*id. From Table,Page IX.cos 5110- <br /> AM Horizontal distance=319.4X.6969=31&09 ft <br /> 51oQ Arg1e Horizontal distance also=Slope distance minus slope <br /> v f 4e <br /> distance <br /> ame fiegntrreesea(1--cosine <br /> i the P eeedingC am the ifollow� <br /> Horizontal distance ing result is obtained.Cosine 60 <br /> 10,=.9669.1—.9959=.0041. <br /> 3I&4X.0041=1.31.319.4-1.31=31&09 ft <br /> When the rise is known,the horizontal distance is anprozimately:—the slope dist- <br /> ance less the square of the rise divided by tVfte the abspe distance. Thus:rise=14 ft., <br /> slope distance=3026 ft. Horizontal distana r—M16—14 X14=302.6-0.32=30¢.28 ft. <br /> 2X 3026 <br /> MADE IN D.LA. <br />