Laserfiche WebLink
TRIGONOMETRIC FORMUL)E <br /> 4, B I3 B <br /> a C <br /> 11 q a a <br /> J a <br /> A b,. C A�b C A b , C <br /> Right Te Oblique Triangles <br /> Solution of Right _Triangles <br /> a b a b a a <br /> For Angle i1n = cos=— tan= <br /> o a , e , b ,cot= a,sec= b. cosec = a <br /> Y (liven <br /> a, b A6o tan A=b= cot B,e = a$+ 2 =a <br /> 1�I��s <br /> `sin A=o =cos B,b=/ +-a (a—a <br /> G <br /> _ S4 -7 `� A,a all B=90°—A,b=a cotA,e= <br /> sin A. <br /> y ,a B=90°—A,a = b tan A,a= cos A. <br /> 3 9 l 3 `� �_. A,o i I B=90°—A,a=e sin A,b=o cos A, <br /> Z l <br /> 'ZSolution of Oblique Triangles <br /> Reagired a sin BC= 1800—(A+B),a =Ba,in C <br /> sinA ' <br /> sin A <br /> bsinA <br /> d, e, bte, C sing= a ,�'= 180°—(A-{ B), Bin sin <br /> F �)_3 / �� a, b, C A,B,a A+B=180°—C,tan j( —A—B) a—b)tan (A+B) <br /> a+ b <br /> a =asin C <br /> sin--A <br /> 0 1 Z 3 ? �� � a ds ,BC <br /> 3 ,a 2 <br /> sin B=�( a,, ,C-180°—(A+B) <br /> a+b+a <br /> 6 <br /> a,.b, c2 2 , area =N/8(8 as— e—a <br /> A, b, c Tea area = baBin A 2 <br /> as sin B sin C <br /> 1 A,B,C,a fArea area = 2 im A <br /> REDUCTION TO HORIZONTAL <br /> Horizontal distance=Slope distance multiplied by the <br /> cosine of the vertical angle.Thus:slope distance=319.41t. <br /> ge Vert.angle—so Id. From Table,Page IX,cos b° <br /> i� <br /> slop. g 9960. Horizontal distance=318.4X.9068=31&OB ft. <br /> $� 1e Horizontal distance also=Slope distance minus s�Ope <br /> ve distance times(1—cosine of vertical angle). With the <br /> same figures as in the preceding example,the follow- <br /> Horizontal distanee ing result is obtained_Cosine 60 10'=.9060.1—9869=.0041. - <br /> 31 .4X.9041=1.91.31&4-1.31=318.00 ft. <br /> When the rise is(mown,the pori�distance is appnoxlmately-the slope dist- <br /> anceless the square of the rises lb tQWD the elope wee• Thus:rise=l4%, <br /> slope distance—Mle ft. HorizoaW dist mee..WLA—l4)e 1A-*M—M-30.20 f4 <br /> 2X302.6 <br />