Laserfiche WebLink
f TRIGONOMETRIC FORMULtE <br /> j " r B B B <br /> a <br /> �7 /� b CA�b CA <br /> C <br /> 13,11'78, Right TrAle Oblique Triangles <br /> Solution of Right Triangles <br /> For Angle n a b o <br /> J 3 t7-73 =6,cos= a,tan= a b d <br /> b,cot = a,sec= b, cosec= a <br /> 6, Given Re red a a <br /> r a, b A, ,d tanA=b= cotB,c = a2-� s = a 1+ E <br /> A,B, b sin A=e =cos B,b=N/ c+a)(c--a =d J 1 _ <br /> a <br /> A,a B, b, o B=90°—A,b=a cotA,d= a <br /> sin A. <br /> O a <br /> A,5 B,a, d B=90°—A,a = b tan A,c= <br /> cos A. <br /> A,d B, a, b I B=900—A,a =c sin A,,b=c cos A, <br /> Solution of Oblique Triangles — <br /> b <br /> '71 Given Required <br /> B a R u C b=asinB� C= 180°—A asin C <br /> sin A — ( �-B). d= sin A� <br /> b sin A <br /> B,e, C sin B= a .C= 180°—(A+B),d = -sin C <br /> �. sin A <br /> b, 0-A B,d A+B=180°7:V,tan z(A—B)— a—b)tan}(A±B) <br /> asin C a+ b <br /> d = <br /> ^ r sin A <br /> a, b, o' A. B, C s=a ,sin A= I bo—d <br /> Bin;B=�s a ,C=180°—(A+B) <br /> a, b e a=a+a+d,area = s(s—a' <br /> A, b, d Ake& b e sin A <br /> (^ area = 2 <br /> a2 sin B sin C <br /> A,B,C,a Area area = 2 sin A <br /> REDUCTION TO HORIZONTAL <br /> Horizontal distance—Slope distance multiplied by the <br /> cosine of the vettical angle.Thus:slope distance=519.4 R. <br /> Vert.angle=5°IW. From Table,Page IX.cos 5°1W= <br /> e a' m 9969 Horizontal diztanoe--319.4X.W*-31&09 iL <br /> $1°Q Ap41e Horizontal distance also=Slope distance minus slope <br /> t„ �e distance times(1—cosine of vertical angle). With the <br /> same figures as in the preceding example,the follow. <br /> Horizontal distanceIng result is ebtatued.Cosine 5°1 .9969.1—.99b9=.0041. <br /> 31a4X.004i=L31.91x4-1.31=31$.09 2L <br /> When the rise is known,the taI eels approximately:—lope dist- <br /> oe less the square of the rites div%*bg bwtce the aisle distance. Thus:rise=l4 fL, <br /> pe distance=30U$ HorjwaW 6-WW2=30L26fL <br /> X 90LS <br /> ^ K. <br />