Laserfiche WebLink
TR460Nf311 ETRIC FORMUL <br /> B B <br /> 3 c a a <br /> b <br /> Oblique Triangles <br /> Solution of Right Tdangles <br /> _ a <br /> , ab <br /> For Ae• sc b <br /> ' cosec <br /> a <br /> Given uired <br /> b. B,a tared=b= cotB,o =V_VT ;=a 1+.ar <br /> a, o B, b <br /> 0 <br /> :d,a b, o B=94•—d,b—acotd,o= a <br /> sin A. <br /> B,a, o B=94°—d,a= b tan d,e— cos d. <br /> a, b B=94°--.A,a s o sin d,b-a cos d, <br /> Solution of Oblique Triangles <br /> utred <br /> asinBC b= sin d ' 0-180°—(d+B),o e"gin O _ . <br /> sin d <br /> v _ 'a, a" sin B= b sin � 184'—(d t B).o � a sin C <br /> „ sin d <br /> B>a -A+B=184°—C,ten j(A-,B)- <br /> sin d <br /> s � d,B,C s=9Zt,lin}A,- 8 ba� ' <br /> sin}B—�s a a° ,C=13(►'—(a+B) <br /> a+b+o <br /> g b, o lea 8= 2 ,area <br /> A, b, c reaarea = b o sin d <br /> 2 *#:. <br /> a'sin B sin C <br /> d,B,C,a a area = , ` <br /> 2 sin d ` <br /> _ REDUCTION TO HORIZONTAL <br /> Horizontal distance—Slope distanes, 4t�pllai by the <br /> cosine oftbearerttaa Mmi Tions x1 6 &09 -�tlil4it. <br /> Vont. tnsTls=b°Id. irrom Ta i6 <br /> cos <br /> o� 9666. Horizontal distanoe—SliliX. fL <br /> $1le Horizontal distance =Slope distance a&aos s}ope <br /> -, Q distance times(1—coline'of vertical With the <br /> same fiQarem as in the precedi <br /> Horizontal distoaat' in¢result is obtained.Cosine 6°1e'®�J .9Y61nq.09t1. <br /> When the rise is known•the bori ontal distance isa=p <br /> pnoe less the square of the rise divided-by twice the slope distance. us:rho-14 46, , <br /> ro slope distance=302.6 ft. Horizontal <br /> s t <br /> V <br />