Laserfiche WebLink
,� Ter r�g,e ,t„ x s w .ate. •- _ .v, m..rn, . <br />This section descnht s a sequence of procedires and tests nccossmy to complete the Vae Sensor installation: <br />1 ATM Pressure Sensor setup <br />2 Vac Sensor setup <br />3. Vacuum integrity test prior to filling tank' <br />4. Manual test` <br />5. Operability test <br />"NOTE: Only one of these two tests is required to complete the installation. <br />ATM Pressure Sensor Setup <br />The ATM Pressure Sensor is factory installed in the SmartSensor / Press module and preassigned to channel 8. At <br />least one SmartSensor / Press (nodule, which contains the ATM Pressure Sensor, must be installed in the console. <br />You must configure at least one ATM Pressure Sensor for use by the Vac Sensor System or a Setup Data Warning <br />will occur. NOTE: if more than one SmartSensor / Press module is installed, only one. ATM Pressure Sensor needs <br />to be configured. <br />Look in console and note the slot position of the SmartSensor / Press module. Enter the Setup Mode and press <br />the FUNCTION key until you see the message: <br />SMARTSENSOR SETUP <br />PRESS <STEP> TO CONTINUE <br />Press STEP until you see the message: <br />[S n <br />SCONFIG - MODULE <br />LOT z- X X X X X X X XX <br />Where x is the slot number containing the SmartSensor / Press module. Press the a key to move the cursor to the <br />last (8th) X. Press CHANGE and the message below should appear: <br />SLOT x -X XXXXXX8 <br />PRESS <STEP> TO CONTINUE <br />Press STEP: <br />[UNTER SMAR SENSOR LABEL � <br />s a: <br />NOTE: In the example above, the ATM P sensor position is 8 but it could Carl 6, 32, or 40 depending on the <br />SmartSensor's module number. <br />Press CHANGE and enter a label: <br />ENTER SMARTSENSORLABEL <br />s B: (ATMP Sensor Label) <br />Press ENTER to accept your label: <br />s 8: ATMP Sensor Label <br />PRESS <STEP> TO CONTINUE <br />Press STEP: <br />S8:SELEGT SS CATEGORY <br />UKNOWN <br />Press CHANGE until you see the message: <br />sB: SELECT SS CATEGORY <br />ATM P SENSOfl <br />Press ENTER to accept the category. Press STEP, then BACKUP to return to the configuration display for Smart <br />Sensor module 1: <br />SS CONFIG - MODULE 1 <br />BLOT x -X X XXX X XX <br />This completes the ATM Pressure Sensor configuration. <br />Vac Sensor Setup <br />Identifying Vac Sensor Zones <br />Before configuring the Vac Sensors, enter the Monitored Zone, SmartSensor module number, and channel number <br />for each Vac Sensor attached to the console in the worksheet in Table 1 below. NOTE: The Vac Sensor Zone <br />Worksheet and the Secondary Containment Volumes By Manufacturer index are both included in the installation kit <br />(P/N 577013-849). Use the Containment Volume index to calculate a zone's interstice volume in gallons. For <br />example, if Tank 1's double wall product piping uses 100 feet of Ameron Dualoy 30001 piping, you would multiply <br />0.21 B6 (from the Secondary Containment Volume index) x 100 feet = 21.86 gallons. For the Tank 1 product <br />piping zone you would enter 21.9 (round to nearest tenth of a gallon) as the calculated zone volume, <br />In the case of a .no that is a double wall sump you would look up the sump in the Containment Volume index and <br />enter that sump's interstice volume as the calculated zone volume. For example, if the Tank 1 sump is a <br />Containment Solutions 42" Double wall tank sump, you would enter 0.8 gallons as the calculated zone volume <br />Table 1. Vac Sensor Zone Worksheet <br />SS Module <br />Vac Sensor Monitored Zone Number <br />SS Module <br />Channel <br />Number <br />Calculated <br />Zone Volume <br />(Gallons) <br />v Lr vnesEri3aa <br />1 <br />0 <br />2 <br />3 <br />1 <br />4 <br />1 <br />5 <br />N <br />1 <br />6 <br />Tank or TankVent <br />Z <br />1 <br />e <br />-- <br />2 <br />9 <br />- <br />2 <br />10 <br />W <br />2 <br />11 <br />2 <br />12 <br />2 <br />13 <br />- - 2 <br />14 <br />2 <br />15 <br />2 <br />16 <br />3 <br />17 <br />3 <br />18 <br />3 <br />19 <br />F- <br />3 <br />20 <br />LL <br />3 <br />21 <br />3 <br />22 <br />3 <br />23 <br />3 <br />24 <br />QU <br />4 <br />-- <br />25 <br />o <br />4 <br />26 <br />® <br />4 <br />27 <br />0 <br />4 <br />28 <br />O <br />4 <br />29 <br />U <br />4 <br />30 <br />4 <br />31 <br />4 <br />32 <br />5 <br />33 <br />Q <br />5 <br />34 <br />O <br />5 <br />35 <br />a <br />5 <br />36 <br />5 <br />37 <br />N <br />5 <br />38 <br />5 <br />t <br />39 <br />40 <br />> <br />Performing Vac Sensor Setup <br />After filling in the. Vac Sensor Zone Worksheet, enter the Setup Mode and press the FUNCTION key until you see <br />the message: <br />SMARTSENSORSETUP <br />PRESS <STEP> TO CONTINUE <br />Press STEP until you see the message: <br />SS CONFIGMODULE t <br />SLOT x -X X XX X X XX <br />Following the completed Vac Sensor Zone Worksheet, configure each Vac Sensor charnel for all SmartSensor <br />modules. NOTE: Once the console communicates with a Vac Sensor (approximately 2 minutes after configuration), <br />it automatically selects the Vac Sensor SS Category for that sensor. <br />When all Vac Sensors have been configured, if necessary, press Tank/Sensor until you see the message: <br />s 1: VAC SENSOR SETUP <br />PRESS <ENTER> <br />Press ENTER: <br />SOMESELECT PUMP 11 <br />NONE <br />You must select the pump that will provide the source of vacuum for this Vac Sensor or a Setup Data Warning will <br />be posted for this Vac Sensor. If necessary, press CHANGE until the correct pump's control device displays (OX <br />(PLLD), WX (WPLLD), or RX (Output Relay)]. NOTE: an Output Relay must be set to Pump Control Output to be <br />assigned as a pump. If the selected pump output relay is not assigned to a pump sense device, a Setup Data <br />Warning for this Vac Sensor will be posted. <br />Press ENTER to confirm your entry. <br />Press STEP to continue.: <br />s 1: (Vacuum Label) <br />VOLUME: 501 <br />Referring to your previously completed volume worksheet, enter the volume in gallons of the interstitial space being <br />monitored by this Vac Sensor. The permitted range is 0.1 to 500 gallons. Default is 501. A Setup Data Warning <br />alarm will activate if a volume between 0.1 and 500 is not entered. <br />Press CHANGE and enter the interstitial space volume. Press ENTER to confirm your entry. <br />Press STEP to continue.: <br />s 1: (Vacuum Label) <br />RELIEF VALVE: NO <br />For all Vac Sensors except the one monitoring a fiberglass tank's interstitial space, a relief varve is usually not <br />needed. For Vac Sensors not requiring a relief valve press STEP to accept the defau!t NO. Press Tank/Sensor to <br />setup another Vac Sensor. <br />For the Van Sensor that monitors a fiberglass tank's interstitial space, a relief valve is required to prevent excess <br />vacuum from damaging the tank. Press CHANGE and select YES. Press ENTER to confirm your entry. <br />Press STEP to continue.: <br />s 1: (Vacuum Label) <br />RELIEF VALVE PRESSURE: -9.0 <br />Enter the pressure at which the installed Relief Valve is rated to open (the vent pressure is stamped on the body of <br />the V R Relief Valve). The permitted range is -5 to -9 psi. Default vent pressure is -9 psi. Press ENTER to confirm <br />your entry. Press Tank/Sensor to setup another Vac Sensor. <br />Vacuum Integrity Test Prior to Filling Tank (Optional) <br />Skip to'Running a Manual Test' if this optional test is not going to be performed. <br />If an external vacuum source is not used to produce a vacuum in the monitored zones prior to startup, you must <br />perform a'Manual Test' on each sensor to clear the 'No Vac' alarm. <br />A procedure to test the integrity of the interstitial spaces monitored by the Veeder-Root Vacuum Sensor system is <br />discussed in this section. An external vacuum source and necessary fittings must be supplied by the customer. <br />Before beginning this procedure all vacuum sensor components in the sump must be installed as described in this <br />manual and be connected to a SmartSensor module in the TLS Console. <br />_ 1. Shut off, tag, and lock out power to the pump: <br />2. At the TLS Console, configure each of the monitored Vac Sensors in the sump (ref. TLS-3XX Setup Manual). <br />Go to the SmartSensor Diag and place each of the monitored Vac Sensors in EVAC HOLD (ref. TLS-3XX <br />Troubleshooting Manual). <br />3. At the 3 way ball valve in the cap of the tank's interstitial riser, remove the tubing going to the Vac Sensor from <br />the fitting in the 3 -way bail valve and connect the external vacuum source to the fitting. With the valve open to <br />the external vacuum source, pull a vacuum down to -8 psi, or if a relief valve is present, down to 1 psi above <br />the relief valve's opening pressure (e.g., if valve opens at -7 psi, pull the vacuum down to -6 psi). <br />4. When the desired vacuum is attained, move the 3 -way ball valve to the other position. Remove the external <br />source from the valve's fitting and reconnect the tubing to the Vac Sensor. Move the valve back to the'normal' <br />position. <br />5. If necessary, repeat this procedure for the product line's interstitial space, the vapor line's interstitial space and <br />the double-wall sump's interstitial space. <br />6. With all of the monitored interstitial spaces under vacuum, at the TLS Console, stop the EVAC HOLD for each <br />Vac Sensor. After a minimum wait of 12 minutes, monitor the Leak Rate and Time to No Vac display for each <br />Vac Sensor. Record the displayed values for each of the sump's vac sensor in the chart in Appendix B, <br />As a general guideline, the Time to No Vac should ideally be 100 hours, and should not be less than 24 hours <br />to time less than 2 hours will produce an alarm). Also, a Leak Rate greater than 22.4 gph will generate a Vacu- <br />um Warning. Both of these diagnostics are indicators of whether the system has a significant vacuum leak. <br />Note that on systems with small volumes, a very small leak rate, well below the 22.4 gph limit, may still cause a <br />Time to No Vac alarm. <br />If either diagnostic exceeds the guideline, the source of the leak should be corrected before the system is <br />started up. Once the leak(s) is corrected, repeat steps 2-6. <br />Z When the monitored interstitial spaces under vacuum are within normal operating limits as described in Step <br />6, fill the tank. <br />81 Once the tank is full, restore power to the pump. <br />Running a Manual Test <br />Perform the Manual Test for Each Vac Sensor <br />You enter the DIAG MODE of the TLS Console by pressing the MODE key until its display appears. Press the <br />FUNCTION key to select diagnostic functions and the STEP key to view each of the Function's displays. Where <br />you can enter changes to else layed data, you do so with the same front keys used enter to system programming <br />selections (i.e., ENTER, CHANGE, etc.). <br />Figure 20 displays the Vac Sensor Manual Test procedure steps and Figure 21 displays the Vac Sensor Evac Hold <br />procedure steps. <br />Vacuum Sensor Operability Test - Required for Each Sensor Prior to Startup <br />1. Vacuum leak test: Turn the 3 -way ball valve (connected to the interstice being monitored) from the normal` <br />position to the 'test' position. This should vent the vacuum sensor to atmosphere while maintaining vacuum in <br />the interstice. <br />2. Wait at least 1 minute at the console for the system to produce a'No Vac' Skim. Press the console's Alarm/ <br />Test key to silence the beeper and acknowledge the alarm. <br />3. Turn the 3 -way ball valve back to the 'normal' position. <br />4. At the console enter the DIAL MODE and initiate a manual test that will clear the 'No Vac' alarm (Refer to <br />Figure 20 for Manual Test instructions). <br />5. Vac Float Liquid Sensor (in sump) test: This test is performed using water, gasoline, or other appropriate test <br />liquid for systems with the float housing in the sump. Unscrew the lower float bowl (about a 1/4 turn) from the <br />Vac Float body and fill the bowl with the test liquid. Screw the filled bowl back onto the Vac Float body and a <br />Liquid Alarm will be generated. At the console press the Alarms -est key to silence the beeper and <br />acknowledge the alarm. Again unscrew the bowl to clear the alarm. Empty the bowl, wipe it clean, then screw <br />it onto the Vac Float body. <br />6. For double -walled tanks, rho interstitial sensor most be removed from the tank to perform a functional test. <br />Refer to the Operability Testing Guide (P/N 577013-814) and follow'Testing Procedure C' (interstitial sensor <br />for steel tanks) or 'Testing Procedure E' (interstitial sensor for fiberglass tanks) as applicable. <br />Z Print the test history and console status for your records. This completes the test procedure. Report any <br />performance concerns to Veeder-Root while on site. <br />]ENaL,E� <br />FE S.EN:G:N G <br />I1 NE <br />E � 63'Nxe p. LLL'. <br />]1 <br />ESY.4if E TAR,EVa6- <br />vEr P.NPNUmagesuchatrave ra <br />lviaaelt�sy <br />E � S. P-NIVLLIF51, , <br />E � STEL a Ire <br />s a <br />serious sensor valuem esoeP savervale <br />Memsedbrp ne ex. l msor) <br />Loge feat on vac amp <br />Vacuum eoural.ame(an vx sensor) <br />rate sogoor h'.h0l is"goingll rival I <br />o AV W. gS II b¢ a1mi, <br />' <br />ratio zingph <br />Proo,lodrumenglal m.ranutoantilain <br />n +sr lY e+ q iiglalx l.laq <br />pl mull UuposleofltNs N 6af I+NU <br />al IbeIStrauss v ma(atl) a, cap'OMum fttor6ed <br />a m. a,,. mo ,arta Baa calculated <br />1 (IIs^ <br />9 'Naerse e S p <br />v YBhNrt <br />1-L Er1 p NPNsiE 3i. ON+xue' <br />S <br />.IILJJJ_ v nE59 ..� <br />is �EW=1_17­0 "tsh-cal+aaaa.cou, <br />(aju'a V- [I]ren' [LI -.no Berse [y P + ❑5 $I.P ETa-unce, <br />�f EtL bless one. 4ellI- <br />Lax lareselao, <br />chitlings. TLSC.... to Vac Sensor Manual Test <br />^ , " sENsoP EVACxotO Evan Fold' cart be used to Douse a manual lest to see <br />�f ness<smEw 1the musanal Space slsak.p well warung to <br />} obtain lie Vae OKVale. <br />I <br />s1AeTE CNDlc <br />1 PReSS+ENTEPa ~- <br />malsonLTall ✓a0AN30A9 <br />e EELE t LSEN60a <br />$L AC ENSOp9 <br />a Floor,EVA. OLn <br />E 9ENRfla <br />e E 4.x D IAg <br />seems PaTO.ommume <br />[ t SYOP AC.NlEFi ar <br />thease E <br />m L <r oI vac seasons <br />6ELECcourve N60q E <br />LJ P car <br />Y e Sen o,+zbe <br />y <br />Pro <br />66RENTEflu <br />\VI PNE3VACH <br />rNN <br />.... <br />Seashore "'oess"I'vollamov, neelool, <br />e ]sElEciv c oP <br />AyacsE 90 s c s L(C lAs bes --- � <br />��i LAC NOW PLL j}, a OpE CHD O¢X� <br />PES9 ENTEPa n' \VI LPq tERa <br />FIL <br />e ] PFE66 enol TOGpNTNUE 1 0-pgjAclEpaDTOrTIOue 5 <br />.+ VACVUF+DK Vice amt Il the JJJ <br />rr s Vacvunt Control `Jalve in the Sewar <br />-r.w bs vcvcciosE� is conn (ID increase the vxuuml creased. <br />kSZ-, FJ:Ivac son:o,, !peep _ <br />tJ LVIOS}ATU9 NOPAVaL <br />N YY xH Mtaxes <br />LEA_PATEt_11f <br />¢+: beets rna xa - y00'n00'(te0 hums)showsis @¢madmum diSDlayetl <br />NDYA.i E xx So:M : serie. <br />Do xxm Hx'i's <br />V <br />EN50R OIAOS <br />pPE96 <ENtEp>.. <br />Figure 21. TLS Console Vac Sensor Evac Hold Procedure <br />appendix A. Vac Sensor Testi Values IRernrn <br />The leak rate for each Interstice will affect the'Time to No Vatl which is the time it would take for the vacuum to be <br />lost if the STP did not turn on to replenish it. However, the smaller the volume, the greater the impact of a small <br />leak on the Time to No Vac: A general guideline is to eliminate any leaks so that the 'Time to No Vac' reads 100 <br />hours, which is the maximum displayed value. <br />Use the chart below to record Vac Sensor system test values <br />TANKETank <br />SENSOR <br />LEAK RATE TIME TO NO VAC <br />(gph) (hr) <br />v Lr vnesEri3aa <br />t Line <br />0 <br />�}(x,,, <br />Tank Vent <br />m <br />11 <br />N <br />Vapor Return Line <br />Tank or TankVent <br />Z <br />r...n c .a 11 1c, <br />Sump <br />O <br />Product Line <br />- <br />W <br />Vapor Return Line <br />W <br />N <br />Tank or Tank Vent <br />Sum <br />Line <br />Vapor Return Line <br />Tank or Tank Vent <br />FProduct <br />]ENaL,E� <br />FE S.EN:G:N G <br />I1 NE <br />E � 63'Nxe p. LLL'. <br />]1 <br />ESY.4if E TAR,EVa6- <br />vEr P.NPNUmagesuchatrave ra <br />lviaaelt�sy <br />E � S. P-NIVLLIF51, , <br />E � STEL a Ire <br />s a <br />serious sensor valuem esoeP savervale <br />Memsedbrp ne ex. l msor) <br />Loge feat on vac amp <br />Vacuum eoural.ame(an vx sensor) <br />rate sogoor h'.h0l is"goingll rival I <br />o AV W. gS II b¢ a1mi, <br />' <br />ratio zingph <br />Proo,lodrumenglal m.ranutoantilain <br />n +sr lY e+ q iiglalx l.laq <br />pl mull UuposleofltNs N 6af I+NU <br />al IbeIStrauss v ma(atl) a, cap'OMum fttor6ed <br />a m. a,,. mo ,arta Baa calculated <br />1 (IIs^ <br />9 'Naerse e S p <br />v YBhNrt <br />1-L Er1 p NPNsiE 3i. ON+xue' <br />S <br />.IILJJJ_ v nE59 ..� <br />is �EW=1_17­0 "tsh-cal+aaaa.cou, <br />(aju'a V- [I]ren' [LI -.no Berse [y P + ❑5 $I.P ETa-unce, <br />�f EtL bless one. 4ellI- <br />Lax lareselao, <br />chitlings. TLSC.... to Vac Sensor Manual Test <br />^ , " sENsoP EVACxotO Evan Fold' cart be used to Douse a manual lest to see <br />�f ness<smEw 1the musanal Space slsak.p well warung to <br />} obtain lie Vae OKVale. <br />I <br />s1AeTE CNDlc <br />1 PReSS+ENTEPa ~- <br />malsonLTall ✓a0AN30A9 <br />e EELE t LSEN60a <br />$L AC ENSOp9 <br />a Floor,EVA. OLn <br />E 9ENRfla <br />e E 4.x D IAg <br />seems PaTO.ommume <br />[ t SYOP AC.NlEFi ar <br />thease E <br />m L <r oI vac seasons <br />6ELECcourve N60q E <br />LJ P car <br />Y e Sen o,+zbe <br />y <br />Pro <br />66RENTEflu <br />\VI PNE3VACH <br />rNN <br />.... <br />Seashore "'oess"I'vollamov, neelool, <br />e ]sElEciv c oP <br />AyacsE 90 s c s L(C lAs bes --- � <br />��i LAC NOW PLL j}, a OpE CHD O¢X� <br />PES9 ENTEPa n' \VI LPq tERa <br />FIL <br />e ] PFE66 enol TOGpNTNUE 1 0-pgjAclEpaDTOrTIOue 5 <br />.+ VACVUF+DK Vice amt Il the JJJ <br />rr s Vacvunt Control `Jalve in the Sewar <br />-r.w bs vcvcciosE� is conn (ID increase the vxuuml creased. <br />kSZ-, FJ:Ivac son:o,, !peep _ <br />tJ LVIOS}ATU9 NOPAVaL <br />N YY xH Mtaxes <br />LEA_PATEt_11f <br />¢+: beets rna xa - y00'n00'(te0 hums)showsis @¢madmum diSDlayetl <br />NDYA.i E xx So:M : serie. <br />Do xxm Hx'i's <br />V <br />EN50R OIAOS <br />pPE96 <ENtEp>.. <br />Figure 21. TLS Console Vac Sensor Evac Hold Procedure <br />appendix A. Vac Sensor Testi Values IRernrn <br />The leak rate for each Interstice will affect the'Time to No Vatl which is the time it would take for the vacuum to be <br />lost if the STP did not turn on to replenish it. However, the smaller the volume, the greater the impact of a small <br />leak on the Time to No Vac: A general guideline is to eliminate any leaks so that the 'Time to No Vac' reads 100 <br />hours, which is the maximum displayed value. <br />Use the chart below to record Vac Sensor system test values <br />TANKETank <br />SENSOR <br />LEAK RATE TIME TO NO VAC <br />(gph) (hr) <br />t Line <br />0 <br />Return Line <br />Tank Vent <br />m <br />t Line <br />N <br />Vapor Return Line <br />Tank or TankVent <br />Z <br />O <br />Sump <br />O <br />Product Line <br />- <br />W <br />Vapor Return Line <br />W <br />N <br />Tank or Tank Vent <br />Sum <br />Line <br />Vapor Return Line <br />Tank or Tank Vent <br />FProduct <br />Sum <br />Product Line <br />z <br />Vapor Return Line <br />Tank or Tank Vent <br />F- <br />W <br />Sump <br />LL <br />:ZI �` �1 1 P <br />i <br />IN <br />i 1'' <br />W <br />J N <br />W <br />O®Q <br />=W3 <br />3Q= <br />0_j< <br />V) v <br />♦< <br />0 V J(V�/ <br />I <br />X <br />O .J <br />LL jL <br />cc <br />Il <br />1/1� <br />rj(VJ <br />Q <br />w <br />® <br />Wm <br />laj <br />Q 1- <br />Q � Q <br />`v eRpF ES S(ZV4 <br />HAL BB <br />814 <br />iJ <br />i <br />Q <br />CIV I� <br />y,to <br />ra <br />a a <br />v, - z z <br />x <br />to o <br />to <br />I v a <br />d d 115 <br />Nv n T <br />o o c ¢ o <br />N <br />= C7 U <br />� zg <br />O zraul <br />LJ X <br />a ecec <br />LL, z <br />zw <br />N N N g mc <br />i ¢ r7 N 00 p <br />M cc 00 <br />O N 00 z o <br />Z On I W w <br />Q n in1.0 <br />z <br />N N z <br />11 <br />LJ <br />In In <br />DO LU CN ge, <br />VACUUM VOLUME DATA (AMERON LCX) y <br />` b <br />ZONE # LINE BEING MONITCRI D LENGTH GALLONS J a ' 2 l <br />1 87 UNE. #1 PRODUCT 187.7:1 (2" COAXIAL) X .0133g/f = 2.50 '=e SIL �- w <br />2 87 UNL. 1#1 VENT & X -OVER 102' X .0133g/f = 1.37�� A.' <br />3 87 UNL I#1 VAPOR MANIFOLD 32' (2" COAXIAL) X .0133g/f] = 0.43 + 7,23 V <br />[347' (3" COAXIAL) X 01968/f = 6.80] CO <br />4 87 UNL #2 PRODUCT 167.75' 1 COAXIAL) X .0133g/f = 2.23 <br />5 87 UNL. #2 VENT & X -OVER 87.75' (2" COAXIAL) X .0133g/f = 1.17 <br />6 87 UNL #2 SIPHON 15' (2" COAXIAL) X .0133g/f = 0.2 a ) <br />v <br />7 91 PREM. PRODUCT 309" (2" COAXIAL) X .0133g/f = 4.11 u or W <br />o f <br />8 91 PREM. VENT & X -OVER 73.E (2" COAXIAL) X .0133g/f = 0.98 <br />0 <br />m <br />O <br />N <br />Z <br />O <br />O <br />W <br />� <br />W <br />N <br />�(nQrn_j <br />NUJ_ <br />O <br />z <br />U>- <br />F- <br />W <br />LL <br />w <br />QU <br />J <br />o <br />® <br />® <br />0 <br />O <br />h <br />W <br />U <br />d <br />N <br />CC <br />Q <br />W <br />Q <br />Cali <br />4! <br />O <br />O <br />a <br />"t <br />F_ <br />N <br />co <br />Z <br />V <br />> <br />O <br />m <br />� <br />:ZI �` �1 1 P <br />i <br />IN <br />i 1'' <br />W <br />J N <br />W <br />O®Q <br />=W3 <br />3Q= <br />0_j< <br />V) v <br />♦< <br />0 V J(V�/ <br />I <br />X <br />O .J <br />LL jL <br />cc <br />Il <br />1/1� <br />rj(VJ <br />Q <br />w <br />® <br />Wm <br />laj <br />Q 1- <br />Q � Q <br />`v eRpF ES S(ZV4 <br />HAL BB <br />814 <br />iJ <br />i <br />Q <br />CIV I� <br />y,to <br />ra <br />a a <br />v, - z z <br />x <br />to o <br />to <br />I v a <br />d d 115 <br />Nv n T <br />o o c ¢ o <br />N <br />= C7 U <br />� zg <br />O zraul <br />LJ X <br />a ecec <br />LL, z <br />zw <br />N N N g mc <br />i ¢ r7 N 00 p <br />M cc 00 <br />O N 00 z o <br />Z On I W w <br />Q n in1.0 <br />z <br />N N z <br />11 <br />LJ <br />In In <br />DO LU CN ge, <br />VACUUM VOLUME DATA (AMERON LCX) y <br />` b <br />ZONE # LINE BEING MONITCRI D LENGTH GALLONS J a ' 2 l <br />1 87 UNE. #1 PRODUCT 187.7:1 (2" COAXIAL) X .0133g/f = 2.50 '=e SIL �- w <br />2 87 UNL. 1#1 VENT & X -OVER 102' X .0133g/f = 1.37�� A.' <br />3 87 UNL I#1 VAPOR MANIFOLD 32' (2" COAXIAL) X .0133g/f] = 0.43 + 7,23 V <br />[347' (3" COAXIAL) X 01968/f = 6.80] CO <br />4 87 UNL #2 PRODUCT 167.75' 1 COAXIAL) X .0133g/f = 2.23 <br />5 87 UNL. #2 VENT & X -OVER 87.75' (2" COAXIAL) X .0133g/f = 1.17 <br />6 87 UNL #2 SIPHON 15' (2" COAXIAL) X .0133g/f = 0.2 a ) <br />v <br />7 91 PREM. PRODUCT 309" (2" COAXIAL) X .0133g/f = 4.11 u or W <br />o f <br />8 91 PREM. VENT & X -OVER 73.E (2" COAXIAL) X .0133g/f = 0.98 <br />