,� Ter r�g,e ,t„ x s w .ate. •- _ .v, m..rn, .
<br />This section descnht s a sequence of procedires and tests nccossmy to complete the Vae Sensor installation:
<br />1 ATM Pressure Sensor setup
<br />2 Vac Sensor setup
<br />3. Vacuum integrity test prior to filling tank'
<br />4. Manual test`
<br />5. Operability test
<br />"NOTE: Only one of these two tests is required to complete the installation.
<br />ATM Pressure Sensor Setup
<br />The ATM Pressure Sensor is factory installed in the SmartSensor / Press module and preassigned to channel 8. At
<br />least one SmartSensor / Press (nodule, which contains the ATM Pressure Sensor, must be installed in the console.
<br />You must configure at least one ATM Pressure Sensor for use by the Vac Sensor System or a Setup Data Warning
<br />will occur. NOTE: if more than one SmartSensor / Press module is installed, only one. ATM Pressure Sensor needs
<br />to be configured.
<br />Look in console and note the slot position of the SmartSensor / Press module. Enter the Setup Mode and press
<br />the FUNCTION key until you see the message:
<br />SMARTSENSOR SETUP
<br />PRESS <STEP> TO CONTINUE
<br />Press STEP until you see the message:
<br />[S n
<br />SCONFIG - MODULE
<br />LOT z- X X X X X X X XX
<br />Where x is the slot number containing the SmartSensor / Press module. Press the a key to move the cursor to the
<br />last (8th) X. Press CHANGE and the message below should appear:
<br />SLOT x -X XXXXXX8
<br />PRESS <STEP> TO CONTINUE
<br />Press STEP:
<br />[UNTER SMAR SENSOR LABEL �
<br />s a:
<br />NOTE: In the example above, the ATM P sensor position is 8 but it could Carl 6, 32, or 40 depending on the
<br />SmartSensor's module number.
<br />Press CHANGE and enter a label:
<br />ENTER SMARTSENSORLABEL
<br />s B: (ATMP Sensor Label)
<br />Press ENTER to accept your label:
<br />s 8: ATMP Sensor Label
<br />PRESS <STEP> TO CONTINUE
<br />Press STEP:
<br />S8:SELEGT SS CATEGORY
<br />UKNOWN
<br />Press CHANGE until you see the message:
<br />sB: SELECT SS CATEGORY
<br />ATM P SENSOfl
<br />Press ENTER to accept the category. Press STEP, then BACKUP to return to the configuration display for Smart
<br />Sensor module 1:
<br />SS CONFIG - MODULE 1
<br />BLOT x -X X XXX X XX
<br />This completes the ATM Pressure Sensor configuration.
<br />Vac Sensor Setup
<br />Identifying Vac Sensor Zones
<br />Before configuring the Vac Sensors, enter the Monitored Zone, SmartSensor module number, and channel number
<br />for each Vac Sensor attached to the console in the worksheet in Table 1 below. NOTE: The Vac Sensor Zone
<br />Worksheet and the Secondary Containment Volumes By Manufacturer index are both included in the installation kit
<br />(P/N 577013-849). Use the Containment Volume index to calculate a zone's interstice volume in gallons. For
<br />example, if Tank 1's double wall product piping uses 100 feet of Ameron Dualoy 30001 piping, you would multiply
<br />0.21 B6 (from the Secondary Containment Volume index) x 100 feet = 21.86 gallons. For the Tank 1 product
<br />piping zone you would enter 21.9 (round to nearest tenth of a gallon) as the calculated zone volume,
<br />In the case of a .no that is a double wall sump you would look up the sump in the Containment Volume index and
<br />enter that sump's interstice volume as the calculated zone volume. For example, if the Tank 1 sump is a
<br />Containment Solutions 42" Double wall tank sump, you would enter 0.8 gallons as the calculated zone volume
<br />Table 1. Vac Sensor Zone Worksheet
<br />SS Module
<br />Vac Sensor Monitored Zone Number
<br />SS Module
<br />Channel
<br />Number
<br />Calculated
<br />Zone Volume
<br />(Gallons)
<br />v Lr vnesEri3aa
<br />1
<br />0
<br />2
<br />3
<br />1
<br />4
<br />1
<br />5
<br />N
<br />1
<br />6
<br />Tank or TankVent
<br />Z
<br />1
<br />e
<br />--
<br />2
<br />9
<br />-
<br />2
<br />10
<br />W
<br />2
<br />11
<br />2
<br />12
<br />2
<br />13
<br />- - 2
<br />14
<br />2
<br />15
<br />2
<br />16
<br />3
<br />17
<br />3
<br />18
<br />3
<br />19
<br />F-
<br />3
<br />20
<br />LL
<br />3
<br />21
<br />3
<br />22
<br />3
<br />23
<br />3
<br />24
<br />QU
<br />4
<br />--
<br />25
<br />o
<br />4
<br />26
<br />®
<br />4
<br />27
<br />0
<br />4
<br />28
<br />O
<br />4
<br />29
<br />U
<br />4
<br />30
<br />4
<br />31
<br />4
<br />32
<br />5
<br />33
<br />Q
<br />5
<br />34
<br />O
<br />5
<br />35
<br />a
<br />5
<br />36
<br />5
<br />37
<br />N
<br />5
<br />38
<br />5
<br />t
<br />39
<br />40
<br />>
<br />Performing Vac Sensor Setup
<br />After filling in the. Vac Sensor Zone Worksheet, enter the Setup Mode and press the FUNCTION key until you see
<br />the message:
<br />SMARTSENSORSETUP
<br />PRESS <STEP> TO CONTINUE
<br />Press STEP until you see the message:
<br />SS CONFIGMODULE t
<br />SLOT x -X X XX X X XX
<br />Following the completed Vac Sensor Zone Worksheet, configure each Vac Sensor charnel for all SmartSensor
<br />modules. NOTE: Once the console communicates with a Vac Sensor (approximately 2 minutes after configuration),
<br />it automatically selects the Vac Sensor SS Category for that sensor.
<br />When all Vac Sensors have been configured, if necessary, press Tank/Sensor until you see the message:
<br />s 1: VAC SENSOR SETUP
<br />PRESS <ENTER>
<br />Press ENTER:
<br />SOMESELECT PUMP 11
<br />NONE
<br />You must select the pump that will provide the source of vacuum for this Vac Sensor or a Setup Data Warning will
<br />be posted for this Vac Sensor. If necessary, press CHANGE until the correct pump's control device displays (OX
<br />(PLLD), WX (WPLLD), or RX (Output Relay)]. NOTE: an Output Relay must be set to Pump Control Output to be
<br />assigned as a pump. If the selected pump output relay is not assigned to a pump sense device, a Setup Data
<br />Warning for this Vac Sensor will be posted.
<br />Press ENTER to confirm your entry.
<br />Press STEP to continue.:
<br />s 1: (Vacuum Label)
<br />VOLUME: 501
<br />Referring to your previously completed volume worksheet, enter the volume in gallons of the interstitial space being
<br />monitored by this Vac Sensor. The permitted range is 0.1 to 500 gallons. Default is 501. A Setup Data Warning
<br />alarm will activate if a volume between 0.1 and 500 is not entered.
<br />Press CHANGE and enter the interstitial space volume. Press ENTER to confirm your entry.
<br />Press STEP to continue.:
<br />s 1: (Vacuum Label)
<br />RELIEF VALVE: NO
<br />For all Vac Sensors except the one monitoring a fiberglass tank's interstitial space, a relief varve is usually not
<br />needed. For Vac Sensors not requiring a relief valve press STEP to accept the defau!t NO. Press Tank/Sensor to
<br />setup another Vac Sensor.
<br />For the Van Sensor that monitors a fiberglass tank's interstitial space, a relief valve is required to prevent excess
<br />vacuum from damaging the tank. Press CHANGE and select YES. Press ENTER to confirm your entry.
<br />Press STEP to continue.:
<br />s 1: (Vacuum Label)
<br />RELIEF VALVE PRESSURE: -9.0
<br />Enter the pressure at which the installed Relief Valve is rated to open (the vent pressure is stamped on the body of
<br />the V R Relief Valve). The permitted range is -5 to -9 psi. Default vent pressure is -9 psi. Press ENTER to confirm
<br />your entry. Press Tank/Sensor to setup another Vac Sensor.
<br />Vacuum Integrity Test Prior to Filling Tank (Optional)
<br />Skip to'Running a Manual Test' if this optional test is not going to be performed.
<br />If an external vacuum source is not used to produce a vacuum in the monitored zones prior to startup, you must
<br />perform a'Manual Test' on each sensor to clear the 'No Vac' alarm.
<br />A procedure to test the integrity of the interstitial spaces monitored by the Veeder-Root Vacuum Sensor system is
<br />discussed in this section. An external vacuum source and necessary fittings must be supplied by the customer.
<br />Before beginning this procedure all vacuum sensor components in the sump must be installed as described in this
<br />manual and be connected to a SmartSensor module in the TLS Console.
<br />_ 1. Shut off, tag, and lock out power to the pump:
<br />2. At the TLS Console, configure each of the monitored Vac Sensors in the sump (ref. TLS-3XX Setup Manual).
<br />Go to the SmartSensor Diag and place each of the monitored Vac Sensors in EVAC HOLD (ref. TLS-3XX
<br />Troubleshooting Manual).
<br />3. At the 3 way ball valve in the cap of the tank's interstitial riser, remove the tubing going to the Vac Sensor from
<br />the fitting in the 3 -way bail valve and connect the external vacuum source to the fitting. With the valve open to
<br />the external vacuum source, pull a vacuum down to -8 psi, or if a relief valve is present, down to 1 psi above
<br />the relief valve's opening pressure (e.g., if valve opens at -7 psi, pull the vacuum down to -6 psi).
<br />4. When the desired vacuum is attained, move the 3 -way ball valve to the other position. Remove the external
<br />source from the valve's fitting and reconnect the tubing to the Vac Sensor. Move the valve back to the'normal'
<br />position.
<br />5. If necessary, repeat this procedure for the product line's interstitial space, the vapor line's interstitial space and
<br />the double-wall sump's interstitial space.
<br />6. With all of the monitored interstitial spaces under vacuum, at the TLS Console, stop the EVAC HOLD for each
<br />Vac Sensor. After a minimum wait of 12 minutes, monitor the Leak Rate and Time to No Vac display for each
<br />Vac Sensor. Record the displayed values for each of the sump's vac sensor in the chart in Appendix B,
<br />As a general guideline, the Time to No Vac should ideally be 100 hours, and should not be less than 24 hours
<br />to time less than 2 hours will produce an alarm). Also, a Leak Rate greater than 22.4 gph will generate a Vacu-
<br />um Warning. Both of these diagnostics are indicators of whether the system has a significant vacuum leak.
<br />Note that on systems with small volumes, a very small leak rate, well below the 22.4 gph limit, may still cause a
<br />Time to No Vac alarm.
<br />If either diagnostic exceeds the guideline, the source of the leak should be corrected before the system is
<br />started up. Once the leak(s) is corrected, repeat steps 2-6.
<br />Z When the monitored interstitial spaces under vacuum are within normal operating limits as described in Step
<br />6, fill the tank.
<br />81 Once the tank is full, restore power to the pump.
<br />Running a Manual Test
<br />Perform the Manual Test for Each Vac Sensor
<br />You enter the DIAG MODE of the TLS Console by pressing the MODE key until its display appears. Press the
<br />FUNCTION key to select diagnostic functions and the STEP key to view each of the Function's displays. Where
<br />you can enter changes to else layed data, you do so with the same front keys used enter to system programming
<br />selections (i.e., ENTER, CHANGE, etc.).
<br />Figure 20 displays the Vac Sensor Manual Test procedure steps and Figure 21 displays the Vac Sensor Evac Hold
<br />procedure steps.
<br />Vacuum Sensor Operability Test - Required for Each Sensor Prior to Startup
<br />1. Vacuum leak test: Turn the 3 -way ball valve (connected to the interstice being monitored) from the normal`
<br />position to the 'test' position. This should vent the vacuum sensor to atmosphere while maintaining vacuum in
<br />the interstice.
<br />2. Wait at least 1 minute at the console for the system to produce a'No Vac' Skim. Press the console's Alarm/
<br />Test key to silence the beeper and acknowledge the alarm.
<br />3. Turn the 3 -way ball valve back to the 'normal' position.
<br />4. At the console enter the DIAL MODE and initiate a manual test that will clear the 'No Vac' alarm (Refer to
<br />Figure 20 for Manual Test instructions).
<br />5. Vac Float Liquid Sensor (in sump) test: This test is performed using water, gasoline, or other appropriate test
<br />liquid for systems with the float housing in the sump. Unscrew the lower float bowl (about a 1/4 turn) from the
<br />Vac Float body and fill the bowl with the test liquid. Screw the filled bowl back onto the Vac Float body and a
<br />Liquid Alarm will be generated. At the console press the Alarms -est key to silence the beeper and
<br />acknowledge the alarm. Again unscrew the bowl to clear the alarm. Empty the bowl, wipe it clean, then screw
<br />it onto the Vac Float body.
<br />6. For double -walled tanks, rho interstitial sensor most be removed from the tank to perform a functional test.
<br />Refer to the Operability Testing Guide (P/N 577013-814) and follow'Testing Procedure C' (interstitial sensor
<br />for steel tanks) or 'Testing Procedure E' (interstitial sensor for fiberglass tanks) as applicable.
<br />Z Print the test history and console status for your records. This completes the test procedure. Report any
<br />performance concerns to Veeder-Root while on site.
<br />]ENaL,E�
<br />FE S.EN:G:N G
<br />I1 NE
<br />E � 63'Nxe p. LLL'.
<br />]1
<br />ESY.4if E TAR,EVa6-
<br />vEr P.NPNUmagesuchatrave ra
<br />lviaaelt�sy
<br />E � S. P-NIVLLIF51, ,
<br />E � STEL a Ire
<br />s a
<br />serious sensor valuem esoeP savervale
<br />Memsedbrp ne ex. l msor)
<br />Loge feat on vac amp
<br />Vacuum eoural.ame(an vx sensor)
<br />rate sogoor h'.h0l is"goingll rival I
<br />o AV W. gS II b¢ a1mi,
<br />'
<br />ratio zingph
<br />Proo,lodrumenglal m.ranutoantilain
<br />n +sr lY e+ q iiglalx l.laq
<br />pl mull UuposleofltNs N 6af I+NU
<br />al IbeIStrauss v ma(atl) a, cap'OMum fttor6ed
<br />a m. a,,. mo ,arta Baa calculated
<br />1 (IIs^
<br />9 'Naerse e S p
<br />v YBhNrt
<br />1-L Er1 p NPNsiE 3i. ON+xue'
<br />S
<br />.IILJJJ_ v nE59 ..�
<br />is �EW=1_170 "tsh-cal+aaaa.cou,
<br />(aju'a V- [I]ren' [LI -.no Berse [y P + ❑5 $I.P ETa-unce,
<br />�f EtL bless one. 4ellI-
<br />Lax lareselao,
<br />chitlings. TLSC.... to Vac Sensor Manual Test
<br />^ , " sENsoP EVACxotO Evan Fold' cart be used to Douse a manual lest to see
<br />�f ness<smEw 1the musanal Space slsak.p well warung to
<br />} obtain lie Vae OKVale.
<br />I
<br />s1AeTE CNDlc
<br />1 PReSS+ENTEPa ~-
<br />malsonLTall ✓a0AN30A9
<br />e EELE t LSEN60a
<br />$L AC ENSOp9
<br />a Floor,EVA. OLn
<br />E 9ENRfla
<br />e E 4.x D IAg
<br />seems PaTO.ommume
<br />[ t SYOP AC.NlEFi ar
<br />thease E
<br />m L <r oI vac seasons
<br />6ELECcourve N60q E
<br />LJ P car
<br />Y e Sen o,+zbe
<br />y
<br />Pro
<br />66RENTEflu
<br />\VI PNE3VACH
<br />rNN
<br />....
<br />Seashore "'oess"I'vollamov, neelool,
<br />e ]sElEciv c oP
<br />AyacsE 90 s c s L(C lAs bes --- �
<br />��i LAC NOW PLL j}, a OpE CHD O¢X�
<br />PES9 ENTEPa n' \VI LPq tERa
<br />FIL
<br />e ] PFE66 enol TOGpNTNUE 1 0-pgjAclEpaDTOrTIOue 5
<br />.+ VACVUF+DK Vice amt Il the JJJ
<br />rr s Vacvunt Control `Jalve in the Sewar
<br />-r.w bs vcvcciosE� is conn (ID increase the vxuuml creased.
<br />kSZ-, FJ:Ivac son:o,, !peep _
<br />tJ LVIOS}ATU9 NOPAVaL
<br />N YY xH Mtaxes
<br />LEA_PATEt_11f
<br />¢+: beets rna xa - y00'n00'(te0 hums)showsis @¢madmum diSDlayetl
<br />NDYA.i E xx So:M : serie.
<br />Do xxm Hx'i's
<br />V
<br />EN50R OIAOS
<br />pPE96 <ENtEp>..
<br />Figure 21. TLS Console Vac Sensor Evac Hold Procedure
<br />appendix A. Vac Sensor Testi Values IRernrn
<br />The leak rate for each Interstice will affect the'Time to No Vatl which is the time it would take for the vacuum to be
<br />lost if the STP did not turn on to replenish it. However, the smaller the volume, the greater the impact of a small
<br />leak on the Time to No Vac: A general guideline is to eliminate any leaks so that the 'Time to No Vac' reads 100
<br />hours, which is the maximum displayed value.
<br />Use the chart below to record Vac Sensor system test values
<br />TANKETank
<br />SENSOR
<br />LEAK RATE TIME TO NO VAC
<br />(gph) (hr)
<br />v Lr vnesEri3aa
<br />t Line
<br />0
<br />�}(x,,,
<br />Tank Vent
<br />m
<br />11
<br />N
<br />Vapor Return Line
<br />Tank or TankVent
<br />Z
<br />r...n c .a 11 1c,
<br />Sump
<br />O
<br />Product Line
<br />-
<br />W
<br />Vapor Return Line
<br />W
<br />N
<br />Tank or Tank Vent
<br />Sum
<br />Line
<br />Vapor Return Line
<br />Tank or Tank Vent
<br />FProduct
<br />]ENaL,E�
<br />FE S.EN:G:N G
<br />I1 NE
<br />E � 63'Nxe p. LLL'.
<br />]1
<br />ESY.4if E TAR,EVa6-
<br />vEr P.NPNUmagesuchatrave ra
<br />lviaaelt�sy
<br />E � S. P-NIVLLIF51, ,
<br />E � STEL a Ire
<br />s a
<br />serious sensor valuem esoeP savervale
<br />Memsedbrp ne ex. l msor)
<br />Loge feat on vac amp
<br />Vacuum eoural.ame(an vx sensor)
<br />rate sogoor h'.h0l is"goingll rival I
<br />o AV W. gS II b¢ a1mi,
<br />'
<br />ratio zingph
<br />Proo,lodrumenglal m.ranutoantilain
<br />n +sr lY e+ q iiglalx l.laq
<br />pl mull UuposleofltNs N 6af I+NU
<br />al IbeIStrauss v ma(atl) a, cap'OMum fttor6ed
<br />a m. a,,. mo ,arta Baa calculated
<br />1 (IIs^
<br />9 'Naerse e S p
<br />v YBhNrt
<br />1-L Er1 p NPNsiE 3i. ON+xue'
<br />S
<br />.IILJJJ_ v nE59 ..�
<br />is �EW=1_170 "tsh-cal+aaaa.cou,
<br />(aju'a V- [I]ren' [LI -.no Berse [y P + ❑5 $I.P ETa-unce,
<br />�f EtL bless one. 4ellI-
<br />Lax lareselao,
<br />chitlings. TLSC.... to Vac Sensor Manual Test
<br />^ , " sENsoP EVACxotO Evan Fold' cart be used to Douse a manual lest to see
<br />�f ness<smEw 1the musanal Space slsak.p well warung to
<br />} obtain lie Vae OKVale.
<br />I
<br />s1AeTE CNDlc
<br />1 PReSS+ENTEPa ~-
<br />malsonLTall ✓a0AN30A9
<br />e EELE t LSEN60a
<br />$L AC ENSOp9
<br />a Floor,EVA. OLn
<br />E 9ENRfla
<br />e E 4.x D IAg
<br />seems PaTO.ommume
<br />[ t SYOP AC.NlEFi ar
<br />thease E
<br />m L <r oI vac seasons
<br />6ELECcourve N60q E
<br />LJ P car
<br />Y e Sen o,+zbe
<br />y
<br />Pro
<br />66RENTEflu
<br />\VI PNE3VACH
<br />rNN
<br />....
<br />Seashore "'oess"I'vollamov, neelool,
<br />e ]sElEciv c oP
<br />AyacsE 90 s c s L(C lAs bes --- �
<br />��i LAC NOW PLL j}, a OpE CHD O¢X�
<br />PES9 ENTEPa n' \VI LPq tERa
<br />FIL
<br />e ] PFE66 enol TOGpNTNUE 1 0-pgjAclEpaDTOrTIOue 5
<br />.+ VACVUF+DK Vice amt Il the JJJ
<br />rr s Vacvunt Control `Jalve in the Sewar
<br />-r.w bs vcvcciosE� is conn (ID increase the vxuuml creased.
<br />kSZ-, FJ:Ivac son:o,, !peep _
<br />tJ LVIOS}ATU9 NOPAVaL
<br />N YY xH Mtaxes
<br />LEA_PATEt_11f
<br />¢+: beets rna xa - y00'n00'(te0 hums)showsis @¢madmum diSDlayetl
<br />NDYA.i E xx So:M : serie.
<br />Do xxm Hx'i's
<br />V
<br />EN50R OIAOS
<br />pPE96 <ENtEp>..
<br />Figure 21. TLS Console Vac Sensor Evac Hold Procedure
<br />appendix A. Vac Sensor Testi Values IRernrn
<br />The leak rate for each Interstice will affect the'Time to No Vatl which is the time it would take for the vacuum to be
<br />lost if the STP did not turn on to replenish it. However, the smaller the volume, the greater the impact of a small
<br />leak on the Time to No Vac: A general guideline is to eliminate any leaks so that the 'Time to No Vac' reads 100
<br />hours, which is the maximum displayed value.
<br />Use the chart below to record Vac Sensor system test values
<br />TANKETank
<br />SENSOR
<br />LEAK RATE TIME TO NO VAC
<br />(gph) (hr)
<br />t Line
<br />0
<br />Return Line
<br />Tank Vent
<br />m
<br />t Line
<br />N
<br />Vapor Return Line
<br />Tank or TankVent
<br />Z
<br />O
<br />Sump
<br />O
<br />Product Line
<br />-
<br />W
<br />Vapor Return Line
<br />W
<br />N
<br />Tank or Tank Vent
<br />Sum
<br />Line
<br />Vapor Return Line
<br />Tank or Tank Vent
<br />FProduct
<br />Sum
<br />Product Line
<br />z
<br />Vapor Return Line
<br />Tank or Tank Vent
<br />F-
<br />W
<br />Sump
<br />LL
<br />:ZI �` �1 1 P
<br />i
<br />IN
<br />i 1''
<br />W
<br />J N
<br />W
<br />O®Q
<br />=W3
<br />3Q=
<br />0_j<
<br />V) v
<br />♦<
<br />0 V J(V�/
<br />I
<br />X
<br />O .J
<br />LL jL
<br />cc
<br />Il
<br />1/1�
<br />rj(VJ
<br />Q
<br />w
<br />®
<br />Wm
<br />laj
<br />Q 1-
<br />Q � Q
<br />`v eRpF ES S(ZV4
<br />HAL BB
<br />814
<br />iJ
<br />i
<br />Q
<br />CIV I�
<br />y,to
<br />ra
<br />a a
<br />v, - z z
<br />x
<br />to o
<br />to
<br />I v a
<br />d d 115
<br />Nv n T
<br />o o c ¢ o
<br />N
<br />= C7 U
<br />� zg
<br />O zraul
<br />LJ X
<br />a ecec
<br />LL, z
<br />zw
<br />N N N g mc
<br />i ¢ r7 N 00 p
<br />M cc 00
<br />O N 00 z o
<br />Z On I W w
<br />Q n in1.0
<br />z
<br />N N z
<br />11
<br />LJ
<br />In In
<br />DO LU CN ge,
<br />VACUUM VOLUME DATA (AMERON LCX) y
<br />` b
<br />ZONE # LINE BEING MONITCRI D LENGTH GALLONS J a ' 2 l
<br />1 87 UNE. #1 PRODUCT 187.7:1 (2" COAXIAL) X .0133g/f = 2.50 '=e SIL �- w
<br />2 87 UNL. 1#1 VENT & X -OVER 102' X .0133g/f = 1.37�� A.'
<br />3 87 UNL I#1 VAPOR MANIFOLD 32' (2" COAXIAL) X .0133g/f] = 0.43 + 7,23 V
<br />[347' (3" COAXIAL) X 01968/f = 6.80] CO
<br />4 87 UNL #2 PRODUCT 167.75' 1 COAXIAL) X .0133g/f = 2.23
<br />5 87 UNL. #2 VENT & X -OVER 87.75' (2" COAXIAL) X .0133g/f = 1.17
<br />6 87 UNL #2 SIPHON 15' (2" COAXIAL) X .0133g/f = 0.2 a )
<br />v
<br />7 91 PREM. PRODUCT 309" (2" COAXIAL) X .0133g/f = 4.11 u or W
<br />o f
<br />8 91 PREM. VENT & X -OVER 73.E (2" COAXIAL) X .0133g/f = 0.98
<br />0
<br />m
<br />O
<br />N
<br />Z
<br />O
<br />O
<br />W
<br />�
<br />W
<br />N
<br />�(nQrn_j
<br />NUJ_
<br />O
<br />z
<br />U>-
<br />F-
<br />W
<br />LL
<br />w
<br />QU
<br />J
<br />o
<br />®
<br />®
<br />0
<br />O
<br />h
<br />W
<br />U
<br />d
<br />N
<br />CC
<br />Q
<br />W
<br />Q
<br />Cali
<br />4!
<br />O
<br />O
<br />a
<br />"t
<br />F_
<br />N
<br />co
<br />Z
<br />V
<br />>
<br />O
<br />m
<br />�
<br />:ZI �` �1 1 P
<br />i
<br />IN
<br />i 1''
<br />W
<br />J N
<br />W
<br />O®Q
<br />=W3
<br />3Q=
<br />0_j<
<br />V) v
<br />♦<
<br />0 V J(V�/
<br />I
<br />X
<br />O .J
<br />LL jL
<br />cc
<br />Il
<br />1/1�
<br />rj(VJ
<br />Q
<br />w
<br />®
<br />Wm
<br />laj
<br />Q 1-
<br />Q � Q
<br />`v eRpF ES S(ZV4
<br />HAL BB
<br />814
<br />iJ
<br />i
<br />Q
<br />CIV I�
<br />y,to
<br />ra
<br />a a
<br />v, - z z
<br />x
<br />to o
<br />to
<br />I v a
<br />d d 115
<br />Nv n T
<br />o o c ¢ o
<br />N
<br />= C7 U
<br />� zg
<br />O zraul
<br />LJ X
<br />a ecec
<br />LL, z
<br />zw
<br />N N N g mc
<br />i ¢ r7 N 00 p
<br />M cc 00
<br />O N 00 z o
<br />Z On I W w
<br />Q n in1.0
<br />z
<br />N N z
<br />11
<br />LJ
<br />In In
<br />DO LU CN ge,
<br />VACUUM VOLUME DATA (AMERON LCX) y
<br />` b
<br />ZONE # LINE BEING MONITCRI D LENGTH GALLONS J a ' 2 l
<br />1 87 UNE. #1 PRODUCT 187.7:1 (2" COAXIAL) X .0133g/f = 2.50 '=e SIL �- w
<br />2 87 UNL. 1#1 VENT & X -OVER 102' X .0133g/f = 1.37�� A.'
<br />3 87 UNL I#1 VAPOR MANIFOLD 32' (2" COAXIAL) X .0133g/f] = 0.43 + 7,23 V
<br />[347' (3" COAXIAL) X 01968/f = 6.80] CO
<br />4 87 UNL #2 PRODUCT 167.75' 1 COAXIAL) X .0133g/f = 2.23
<br />5 87 UNL. #2 VENT & X -OVER 87.75' (2" COAXIAL) X .0133g/f = 1.17
<br />6 87 UNL #2 SIPHON 15' (2" COAXIAL) X .0133g/f = 0.2 a )
<br />v
<br />7 91 PREM. PRODUCT 309" (2" COAXIAL) X .0133g/f = 4.11 u or W
<br />o f
<br />8 91 PREM. VENT & X -OVER 73.E (2" COAXIAL) X .0133g/f = 0.98
<br />
|