Laserfiche WebLink
Nitrate Mass Balance Calculation <br /> Data Input: <br /> Effluent Quantity(Q): 110 gals/day Concentration Rain (Nb): 0.50 mg/L-N t <br /> Effluent Stream (N,x): 80.00 mg/L-N Denitrification (d): 20.0% <br /> Site Area(A): 1.64 Acres Deep Perc. of Rain (R): 8.00 in/yr <br /> Result: <br /> Mass Balance(N,): 6.9 mg/L-N <br /> MCL Drinking Water Nitrate as N: 10.0 mg/L-N Waste Loading (W): 0.90 in/yr <br /> Percent of MCL Nitrate as N 69% <br /> Equations: <br /> Ill <br /> (W) in = (Q) gal x 1 W x 365 day x 1 acre x 12 in _ x 1 Find <br /> yr day 7.48 gal 1 year 43,560 ftz 1 ft (A)acre <br /> 0.9 in/yr(site) =110 gal/day x (1 cu-ft/7.48 gals)x(365 days/1 year)x(1 acre 143,560 sq-ft)x(12 in/1 ft)x(1 site/1.64 acres) <br /> N,= WN,,(1-d)+RN, Hantzsche-Fennemore Equation(Nc) <br /> W+R <br /> 6.93 mg/L-N=((0.9 in/yr x 80 mg)L-N x(1-0.2))+(8 in/yr x 0.5mg/L-N))/(0.9 in/yr+8 in/yr) <br /> Variables: <br /> Nc=Average nitrate-N concentration(mgll)of combined effluent and rainfall percolate (6.93 mg/L-N). <br /> W= Uniform waste water loading for study area (in/yr) (0.9 inches/year). <br /> Nw=Total nitrate-N concentration of waste water percolate(80 mg/L-N). <br /> d=Fraction of nitrate-N loss due to denitrification in the soil (20%). <br /> R=Uniform deep percolation of rainfall (8 in/yr). <br /> Nb=Background nitrate-N concentration of rainfall (0.5 mg/L-N). <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 80 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 20%. <br /> 3. Estimated deep percolation of rainfall is 8 in/yr, see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 0.5 mg/L-N. <br /> 4 <br /> t <br />