Laserfiche WebLink
'Nitrate Mass Balance Calculation " <br /> Data Input: <br /> Effluent Quantity(Q): 490 gals/day Concentration Rain (No): 1.00 mgt-N <br /> Effluent Stream(N,): 45.00 mg/L-N Denitrification(d): 25.0% <br /> Site Area(A): 2.51 Acres Deep Perc. of Rain(R): 6.84 in/yr <br /> Waste Loading(W): 2.62 in/yr <br /> Result: <br /> Mass Balance(Nj: 10.1 mg/L-N <br /> '— MCL Drinking Water Nitrate as N: 10.0 mg/L-N <br /> Percent of MCL Nitrate as N 101% <br /> Equations: <br /> (W) in = (Q) gal x 1 ft3 x 365 day x 1 acre x 12 in x 1 <br /> Find <br /> yr day 7.48 gal 1 year 43.560 ft, 1 ft (A)acre <br /> 2.62 in/yr(site) =490 gal/day x(1 cu-ft/7.48 gals)x (355 days/1 year)x (1 acre 143,560 sq-R)x(12 in/1 ft)x (1 site/2.51 acres) <br /> N, _ <br /> WN_(1-d)+RN„ Hantzsche-Fennemore Equation(Ncl <br /> _ W+R <br /> 10.08 mg/L-N= ((2.62 in/yr x 45 mg/L-N x(1-0.25))+(6.84 in/yr x 1mg/L-N))/(2.62 in/yr+6.84 In/Yr) <br /> Variables: <br /> Nc=Average nitrate-N concentration (mg/I) of combined effluent and rainfall percolate (10.08 mg/L-N). <br /> W= Uniform waste water loading for study area (in/yr) (2.62 inches/year). <br /> Nw= Total nitrate-N concentration of waste water percolate (45 mg/L-N). <br /> d = Fraction of nitrate-N loss due to denitrification in the soil (25%). <br /> R = Uniform deep percolation of rainfall (6.84 in/yr). <br /> Nb = Background nitrate-N concentration of rainfall (1 mg/L-N). <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 45 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 25%. <br /> 3. Estimated deep percolation of rainfall is 6.84 in/yr, see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> NEIL O. ANDERSON <br /> A N D A S S O C I A T E 5 <br /> Plate 11 <br />