Laserfiche WebLink
~Nitrate Mass Balance Calculation's <br /> Data Input: <br /> Effluent Quantity(Q): 6,600 gals/day Concentration Rain (Nb): 1.00 mg/L-N <br /> Effluent Stream (N,): 45.00 mg/L-N Denitrification (d): 10.0% <br /> Site Area (A): 44.59 Acres Deep Perc. of Rain (R): 6.84 in/yr <br /> Waste Loading (W): 1.99 in/yr <br /> Result: <br /> Mass Balance(N j: 9.9 mg/L-N <br /> MCL Drinking Water Nitrate as N: 10.0 mg/L-N <br /> Percent of MCL Nitrate as N 99% <br /> Equations: <br /> (W) in = (Q) gal x 1 ft3 x 365 day x 1 acre x 12 in x 1 Find <br /> yr day 7.48 gal 1 year 43,560 ft 1 ft (A)acre <br /> 1.99 in/yr(site) =6,600 gal/day x(1 cu-ft/7.48 gals)x(365 days/1 year)x(1 acre/43,560 sq-ft)x(12 in/1 ft)x(1 site/44.59 acres) <br /> N�= WN-(1-d)+RNb Hantzsche-Fennemore Equation (Nc) <br /> W+R <br /> 9.9 mg/L-N=((1.99 in/yr x 45 mg/L-N x(1-0.1))+(6.84 in/yr x 1mg/L-N))/(1.99 in/yr+6.84 in/yr) <br /> Variables: <br /> Nc=Average nitrate-N concentration (mg/1)of combined effluent and rainfall percolate(9.9 mg/L-N). <br /> W=Uniform waste water loading for study area(in/yr)(1.99 inches/year). <br /> Nw=Total nitrate-N concentration of waste water percolate(45 mg/L-N). <br /> d = Fraction of nitrate-N loss due to denitrification in the soil (10%). <br /> R=Uniform deep percolation of rainfall (6.84 in/yr). <br /> Nb=Background nitrate-N concentration of rainfall (1 mg/L-N). <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 45 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 10%. <br /> 3. Estimated deep percolation of rainfall is 6.84 in/yr, see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> NEIL O. ANDERSON <br /> A N D A S S O C I A T E S <br /> Plate 10 <br />