Laserfiche WebLink
Nitrate Mass Balance Calculation <br /> Data Input: <br /> ' Effluent Quantity(Q): 14,830 gals/day Concentration Rain (Nb): 1.00 mg/L-N <br /> Effluent Stream (N,): 45.85 mg/L-N Denitrification (d): 25.0% j <br /> Site Area (A): 22.61 Acres ! Deep Perc. of Rain (R): 5.76 in/yr <br /> Result: <br /> Mass Balance(N.): 21.2 mg/L-N Waste Loading (W): 8.82 in/yr <br /> MCL Drinking Water Nitrate as N: 10.0 mg/L-N <br /> Percent of MCL Nitrate as N 212% <br /> Equations: <br /> (W) in = (Q) gal x 1 ft3 x 365 day x 1 acre x 12 in x 1 Find <br /> yr day 7.48 gal 1 year 43,560 ft2 1 ft (A)acre <br /> 8.82 in/yr(site) =14,830 gal/day x(1 cu-ft/7.48 gals)x(365 days/1 year)x(1 acre/43,560 sq-ft)x(12 in/1 ft)x(1 site/22.61 acres) <br /> N,= WN,j1-d)+RN,, Hantzsche-Fennemore Equation(Nc) <br /> e, <br /> 21.19 mg/L-N-((8.82 in/yr x 45.85 mg/L-N x (1-0.25))+(5.76 in/yr x 1mg/L-N))/(8.82 in/yr+5.76 in/yr) <br /> Variables: <br /> Nc=Average nitrate-N concentration (mg/1) of combined effluent and rainfall percolate (21.19 mg/L-N). <br /> W=Uniform waste water loading for study area(in/yr) (8.82 inches/year). <br /> "- Nw=Total nitrate-N concentration of waste water percolate(45.85 mg/L-N). <br /> d=Fraction of nitrate-N loss due to denitrification in the soil (25%). <br /> R= Uniform deep percolation of rainfall (5.76 in/yr). <br /> Nb= Background nitrate-N concentration of rainfall (1 mg/L-N). <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 45.85 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 25%. <br /> 3. Estimated deep percolation of rainfall is 5.76 in/yr, see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> NEIL O. ANDERSON <br /> AN D ASSOCIATES <br /> Plate 10 <br />