Laserfiche WebLink
Nitrate Mass Balance Calculation <br /> Data Input: <br /> Effluent Quantity(Q): 2,566 gals/day Concentration Rain(Nb): 1.00 mg/L-N <br /> Effluent Stream(NN,): 85.00 mg/L-N Denitrification(d): 10.0% <br /> Site Area(A): 5,753.40 Acres Deep Perc. of Rain(R): 2.52 in/yr <br /> Waste Loading(W): 0.01 in/yr <br /> Result: <br /> Mass Balance(N j: 1.2 mg/L-N <br /> MCL Drinking Water Nitrate as N: 10.0 mg/L-N <br /> Percent of MCL Nitrate as N 12% <br /> Equations: <br /> (W) in = (Q) gal x 1 ft3 x 365 day x 1 acre x 12 in x 1 Find CW <br /> yr day 7.48 gal 1 year 43,560 ft2 1 ft (A)acre <br /> 0.01 in/yr(site)=2,566 gal/day x(1 cu-ft/7.48 gals)x(365 days/1 year)x(1 acre/43,560 sq-ft)x(12 in/1 R)x(1 site/5753.4 ac <br /> N,= WN, 1-d +RN Hantzsche-Fennemore Equation(Nc) <br /> VV-+R <br /> 1.18 mg/L-N= ((0.01 in/yr x 85 mg/L-N x(1-0.1))+(2.52 in/yr x Img/L-N))/(0.01 in/yr+2.52 in/yr) <br /> Variables: <br /> Nc= Average nitrate-N concentration(mg/1)of combined effluent and rainfall percolate(1.18 mg/L-N). <br /> W= Uniform waste water loading for study area(in/yr) (0.01 inches/year). <br /> Nw =Total nitrate-N concentration of waste water percolate(85 mg/L-N). <br /> d = Fraction of nitrate-N loss due to denitrification in the soil (10%). <br /> R = Uniform deep percolation of rainfall(2.52 in/yr). <br /> Nb = Background nitrate-N concentration of rainfall (1 mg/L-N). <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 85 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 10%. <br /> 3. Estimated deep percolation of rainfall is 2.52 in/yr,see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> 0L, e-.Ir a I og i x <br /> Plate 2 <br />