Laserfiche WebLink
APPENDIX D <br /> STATISTICAL METHODS TO DETERMINE CONCENTRATION LIMITS <br /> TOLERANCE LIMIT METHODOLOGIES <br /> The purpose of a tolerance interval approach is to define a concentration range from <br /> background well data,within which a large proportion of the monitoring observations should <br /> fall with a high probability. The proportion of the population included is referred to as the <br /> coverage. The probability with which the tolerance interval includes the proportion of the <br /> population is referred to as the tolerance coefficient. <br /> Consistent with USEPA and state recommendations, Sanitas (computer program utilized) <br /> uses a 95 percent coverage and 95 percent tolerance coefficient. The upper 95 percent <br /> tolerance limit will contain at least 95 percent of the distribution of observations from <br /> background well data. The tolerance interval method is described in the following <br /> documents: <br /> -- Introduction to Statistical Quality Control, D.C. Montgomery. John Wiley <br /> Publishing, New York. 1985. <br /> -- Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, <br /> Interim Final Guidance Document, USEPA. USEPA/530-SW-89-026. <br /> February 1989. <br /> -- Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, <br /> Addendum to Interim Final Guidance, USEPA. USEPA/530-R-93-003. July <br /> 1992. <br /> San Joaquin County uses Groundwater Statistical Analysis System (GSAS, now referred <br /> to as Sanitas) to calculate tolerance limits for County Landfills. Sanitas is a statistical <br /> software program developed by Intelligent Decision Technologies, Ltd. (IDT). It is <br /> specifically designed to evaluate water quality monitoring data for landfills. Sanitas <br /> performs all pre- and post-analysis tests required so that the data do not violate size and <br /> distribution assumptions of the relevant statistical analysis. <br /> Parametric Tolerance Limit ' <br /> When conducting the tolerance interval method, Sanitas automatically evaluates the <br /> distribution of the data. For data sets with 50 or fewer samples the Coefficient of Variation <br /> test for normality is used, and for data sets greater than 50 samples the Shapiro-Francia <br /> test is used. Sanitas applies the parametric tolerance limit test when the background data <br /> set is found to have less than 50 percent non-detects and the background data have a <br /> normal or transformed normal distribution. If greater than 15 percent but less than 50 <br /> percent of the background data set consist of non-detect values, the mean and standard <br /> deviation of the data set are adjusted using the Cohen's Method. The tolerance limit is <br /> then calculated using the adjusted values. <br /> Nonparametric Tolerance Limit , <br /> When the background data set contains greater than 50 percent but less than 100 percent , <br /> nondetect values and/or its distribution is not normal (or transformed normal), Sanitas <br /> applies the nonparametric tolerance limit method. However, this method requires a large <br /> number of samples to achieve a false positive rate of 1 percent or less, which is required <br />